| 1. | EXECUTIVE SUMMARY |
| 1.1. | What's new in this report? |
| 1.2. | Optimal temperatures for multiple components |
| 1.3. | Battery thermal management competition |
| 1.4. | Thermal system architecture |
| 1.5. | BEV cars with heat pumps forecast (units) |
| 1.6. | Battery thermal management strategy by OEM |
| 1.7. | Higher battery capacities and liquid cooling |
| 1.8. | Cooling methodologies by region |
| 1.9. | Battery thermal management strategy forecast (GWh) |
| 1.10. | Thermal management in cell-to-pack designs |
| 1.11. | Immersion fluids: thermal conductivity and specific heat |
| 1.12. | Immersion fluid volume forecast (passenger cars, liters) |
| 1.13. | Thermal conductivity comparison of suppliers |
| 1.14. | Thermal conductivity shift |
| 1.15. | TIM pricing by supplier |
| 1.16. | TIM forecast for EV batteries by TIM type (revenue, US$) |
| 1.17. | Fire protection materials: main categories |
| 1.18. | Fire protection material market shares |
| 1.19. | Fire protection materials forecast (kg) |
| 1.20. | Motor thermal management competition |
| 1.21. | Motor cooling strategy by power |
| 1.22. | Cooling technology: OEM strategies |
| 1.23. | Motor cooling strategy by region |
| 1.24. | Motor cooling strategy forecast (units) |
| 1.25. | Power electronics thermal management competition |
| 1.26. | The transition to SiC |
| 1.27. | Advanced wire bonding techniques for inverters |
| 1.28. | Why metal sintering for power electronics? |
| 1.29. | Drivers for direct oil cooling of inverters |
| 1.30. | Inverter cooling strategy forecast (units) |
| 1.31. | Company profiles |
| 2. | INTRODUCTION |
| 2.1. | The growing EV market and need for thermal management |
| 2.2. | Electric vehicle definitions |
| 2.3. | Optimal temperatures for multiple components |
| 2.4. | Battery thermal management competition |
| 2.5. | Motor thermal management competition |
| 2.6. | Power electronics thermal management competition |
| 3. | IMPACT OF TEMPERATURE AND THERMAL MANAGEMENT ON RANGE |
| 3.1. | Range calculations |
| 3.2. | Impact of ambient temperature and climate control |
| 3.3. | Impact of ambient temperature and climate control |
| 3.4. | Model comparison against ambient temperature |
| 3.5. | Model comparison with climate control |
| 3.6. | Model comparison with climate control |
| 3.7. | Summary |
| 4. | INNOVATIONS IN CABIN HEATING |
| 4.1. | Holistic vehicle thermal management |
| 4.2. | Technology timeline |
| 4.3. | What is a heat pump? |
| 4.4. | PTC vs heat pump |
| 4.5. | The impact on EV range |
| 4.6. | Recent EVs with heat pumps |
| 4.7. | BEV cars with heat pumps forecast (units) |
| 4.8. | Further innovations |
| 4.9. | Advantages of sophisticated thermal management |
| 4.10. | Thermal management advanced control: key players and technologies |
| 4.11. | Thermal system supplier announcements |
| 4.12. | General Motors - heat pump integration |
| 4.13. | Hanon Systems - heat pump systems |
| 5. | COOLANT FLUIDS, REFRIGERANTS, AND DIFFERENCES FOR EVS |
| 5.1. | Thermal system architecture |
| 5.2. | Thermal system architecture examples (1) |
| 5.3. | Thermal system architecture examples (2) |
| 5.4. | Coolant fluids in EVs |
| 5.5. | What's different about fluids used for EVs? |
| 5.6. | Electrical properties |
| 5.7. | Corrosion with fluids |
| 5.8. | Reducing viscosity |
| 5.9. | Lubrizol - oils for EVs |
| 5.10. | Arteco - Water-glycol coolants for EVs |
| 5.11. | Dober - water-glycol coolants for EVs |
| 5.12. | Refrigerant for EVs |
| 5.13. | Summary and outlook |
| 6. | THERMAL MANAGEMENT OF LI-ION BATTERIES IN ELECTRIC VEHICLES |
| 6.1. | Current technologies and OEM strategies |
| 6.1.1. | Introduction to EV battery thermal management |
| 6.1.2. | Active vs passive cooling |
| 6.1.3. | Passive battery cooling methods |
| 6.1.4. | Active battery cooling methods |
| 6.1.5. | Air cooling |
| 6.1.6. | Liquid cooling |
| 6.1.7. | Liquid cooling: design options |
| 6.1.8. | Liquid cooling: alternative fluids |
| 6.1.9. | Liquid cooling: large OEM announcements |
| 6.1.10. | Refrigerant cooling |
| 6.1.11. | Hyundai considering refrigerant cooling |
| 6.1.12. | Coolants: comparison |
| 6.1.13. | Cooling strategy thermal properties |
| 6.1.14. | Analysis of battery cooling methods |
| 6.1.15. | Battery thermal management strategy by OEM |
| 6.1.16. | OEMs are converging on liquid cooling |
| 6.1.17. | The emergence of fast charging |
| 6.1.18. | Higher battery capacities and liquid cooling |
| 6.1.19. | Why liquid cooling dominates |
| 6.1.20. | Cooling methodologies by region |
| 6.1.21. | Cooling methodologies by cell type |
| 6.1.22. | Future global trends in OEM cooling methodologies |
| 6.1.23. | Battery thermal management strategy forecast (GWh) |
| 6.1.24. | IDTechEx outlook |
| 6.1.25. | System changes moving to 800V |
| 6.1.26. | Thermal management in 800V systems |
| 6.1.27. | Thermal management in 800V systems |
| 6.1.28. | Thermal management in cell-to-pack designs |
| 6.2. | Immersion cooling for Li-ion batteries in EVs |
| 6.2.1. | Immersion cooling: introduction |
| 6.2.2. | Single-phase vs two-phase cooling |
| 6.2.3. | Immersion cooling fluids requirements |
| 6.2.4. | Immersion cooling architecture |
| 6.2.5. | Players: immersion fluids for EVs (1) |
| 6.2.6. | Players: immersion fluids for EVs (2) |
| 6.2.7. | Players: immersion fluids for EVs (3) |
| 6.2.8. | Engineered Fluids - dielectric immersion fluids |
| 6.2.9. | Immersion fluids: density and thermal conductivity |
| 6.2.10. | Immersion fluids: operating temperature |
| 6.2.11. | Immersion fluids: thermal conductivity and specific heat |
| 6.2.12. | Immersion fluids: viscosity |
| 6.2.13. | Immersion fluids: breakdown voltage |
| 6.2.14. | Immersion fluids: costs |
| 6.2.15. | Immersion fluids: summary |
| 6.2.16. | Players: XING Mobility, 3M and Castrol |
| 6.2.17. | Players: Rimac and Solvay |
| 6.2.18. | Players: Rimac ditching immersion? |
| 6.2.19. | Players: M&I Materials and Faraday Future |
| 6.2.20. | Players: Exoès, e-Mersiv and FUCHS Lubricants |
| 6.2.21. | Players: Kreisel and Shell |
| 6.2.22. | Players: Curtiss Motorcycles |
| 6.2.23. | LION Electric |
| 6.2.24. | McLaren Speedtail and Artura |
| 6.2.25. | Mercedes-AMG |
| 6.2.26. | SWOT analysis |
| 6.2.27. | IDTechEx outlook |
| 6.2.28. | Volume of immersion fluids in an EV |
| 6.2.29. | Immersion market adoption forecast |
| 6.2.30. | Immersion fluid volume forecast (passenger cars, liters) |
| 6.2.31. | Immersion fluid volume forecast (construction and agriculture EVs, liters) |
| 6.3. | Phase Change Materials (PCMs) |
| 6.3.1. | Phase change materials (PCMs) |
| 6.3.2. | Phase change materials as thermal energy storage |
| 6.3.3. | Fast charge of Li-ion batteries using integrated battery thermal management (iBTM) - AllCell |
| 6.3.4. | Calogy Solutions - heat pipe integration with PCMs |
| 6.3.5. | Phase change materials - players |
| 6.3.6. | PCM categories and pros and cons |
| 6.3.7. | PCM vs battery case study |
| 6.3.8. | Player: Sunamp |
| 6.3.9. | PCMs - players in EVs |
| 6.3.10. | Operating temperature range of commercial PCMs |
| 6.3.11. | AllCell (Beam Global) |
| 6.3.12. | PCMs - use-case and outlook |
| 6.4. | Heat spreaders and cooling plates |
| 6.4.1. | Inter-cell heat spreaders or cooling plates |
| 6.4.2. | Chevrolet Volt and Dana |
| 6.4.3. | Advanced cooling plates |
| 6.4.4. | Advanced cold plate design |
| 6.4.5. | Roll bond aluminium cold plates |
| 6.4.6. | Examples of cold plate design |
| 6.4.7. | DuPont - hybrid composite/metal cooling plate |
| 6.4.8. | L&L Products - structural adhesive to enable a new cold plate design |
| 6.4.9. | Senior Flexonics - battery cold plate materials choice |
| 6.4.10. | Graphite heat spreaders |
| 6.4.11. | NeoGraf - graphitic thermal materials |
| 6.5. | Other notable developments |
| 6.5.1. | Temperature monitoring for EV batteries |
| 6.5.2. | IEE: printed temperature sensor and heater |
| 6.5.3. | InnovationLab: Integrated pressure/temperature sensors and heaters for battery cells |
| 6.5.4. | Tab cooling rather than surface cooling |
| 6.5.5. | Thermoelectric cooling |
| 6.5.6. | Skin cooling: Aptera Solar EV |
| 6.6. | Thermal management of EV batteries: use-cases |
| 6.6.1. | Audi e-tron |
| 6.6.2. | Audi e-tron GT |
| 6.6.3. | BMW i3 |
| 6.6.4. | BYD Blade |
| 6.6.5. | Chevrolet Bolt |
| 6.6.6. | Faraday Future FF 91 |
| 6.6.7. | Ford Mustang Mach-E/Transit/F150 battery |
| 6.6.8. | Hyundai Kona |
| 6.6.9. | Hyundai E-GMP |
| 6.6.10. | Jaguar I-PACE |
| 6.6.11. | Mercedes EQS |
| 6.6.12. | MG ZS EV |
| 6.6.13. | MG cell-to-pack |
| 6.6.14. | Polestar |
| 6.6.15. | Rimac Technology |
| 6.6.16. | Rivian |
| 6.6.17. | Romeo Power |
| 6.6.18. | Tesla Model S P85D |
| 6.6.19. | Tesla Model 3/Y |
| 6.6.20. | Tesla Model 3/Y prismatic LFP pack |
| 6.6.21. | Tesla Model S Plaid |
| 6.6.22. | Tesla 4680 pack |
| 6.6.23. | Toyota Prius PHEV |
| 6.6.24. | Toyota RAV4 PHEV |
| 6.6.25. | Voltabox |
| 6.6.26. | VW MEB Platform |
| 6.6.27. | Xerotech |
| 6.7. | Thermal interface materials for EV battery packs |
| 6.7.1. | Introduction to thermal interface materials for EVs |
| 6.7.2. | TIM pack and module overview |
| 6.7.3. | TIM application - pack and modules |
| 6.7.4. | TIM application by cell format |
| 6.7.5. | Key properties for TIMs in EVs |
| 6.7.6. | Gap pads in EV batteries |
| 6.7.7. | Switching to gap fillers from pads |
| 6.7.8. | Dispensing TIMs introduction |
| 6.7.9. | Challenges for dispensing TIM |
| 6.7.10. | Thermally conductive adhesives in EV batteries |
| 6.7.11. | Material options and market comparison |
| 6.7.12. | TIM chemistry comparison |
| 6.7.13. | The silicone dilemma for the automotive market |
| 6.7.14. | Thermal interface material fillers for EV batteries |
| 6.7.15. | TIM filler comparison and adoption |
| 6.7.16. | Thermal conductivity comparison of suppliers |
| 6.7.17. | Factors impacting TIM pricing |
| 6.7.18. | TIM pricing by supplier |
| 6.7.19. | TIM in cell-to-pack designs |
| 6.7.20. | TIM players |
| 6.7.21. | TIM EV use cases |
| 6.7.22. | TIM forecasts |
| 6.8. | Fire protection materials |
| 6.8.1. | Thermal runaway and fires in EVs |
| 6.8.2. | Battery fires and related recalls (automotive) |
| 6.8.3. | Automotive fire incidents: OEMs and causes |
| 6.8.4. | EV fires compared to ICEs |
| 6.8.5. | Severity of EV fires |
| 6.8.6. | EV fires: when do they happen? |
| 6.8.7. | Regulations |
| 6.8.8. | What are fire protection materials? |
| 6.8.9. | Thermally conductive or thermally insulating? |
| 6.8.10. | Fire protection materials: main categories |
| 6.8.11. | Material comparison |
| 6.8.12. | Density vs thermal conductivity - thermally insulating |
| 6.8.13. | Material market shares |
| 6.8.14. | Fire protection materials forecast (kg) |
| 6.8.15. | Fire protection materials |
| 7. | THERMAL MANAGEMENT IN EV CHARGING STATIONS |
| 7.1. | Overview of charging levels |
| 7.2. | High power charging (HPC) will be the new premium public charging solution |
| 7.3. | Thermal considerations for fast charging |
| 7.4. | Liquid cooled charging stations |
| 7.5. | Cable cooling to achieve high power charging |
| 7.6. | Tesla adopts liquid-cooled cable for its Supercharger |
| 7.7. | Liquid-cooled connector for ultra fast charging |
| 7.8. | Brugg eConnect liquid cooled cables |
| 7.9. | ITT Cannon liquid cooled charging |
| 7.10. | Immersion cooled charging stations |
| 7.11. | Two-phase cooled charging cables |
| 7.12. | Commercial charger benchmark: cooling technology |
| 7.13. | Charging infrastructure for electric vehicles |
| 8. | THERMAL MANAGEMENT OF ELECTRIC MOTORS |
| 8.1. | Overview |
| 8.1.1. | Electric traction motor types |
| 8.1.2. | Electric motor type market share |
| 8.1.3. | Cooling electric motors |
| 8.2. | Motor cooling strategies |
| 8.2.1. | Air cooling |
| 8.2.2. | Water-glycol cooling |
| 8.2.3. | Oil cooling |
| 8.2.4. | Electric motor thermal management overview |
| 8.2.5. | Motor cooling strategy by power |
| 8.2.6. | Cooling strategy by motor type |
| 8.2.7. | Cooling technology: OEM strategies |
| 8.2.8. | Motor cooling strategy by region |
| 8.2.9. | Motor cooling strategy market share (2015-2022) |
| 8.2.10. | Motor cooling strategy forecast (units) |
| 8.2.11. | Alternate cooling structures |
| 8.2.12. | Refrigerant cooling |
| 8.2.13. | Immersion cooling |
| 8.2.14. | Phase change materials |
| 8.3. | Motor insulation and encapsulation |
| 8.3.1. | Impregnation and encapsulation |
| 8.3.2. | Potting and encapsulation: players |
| 8.3.3. | Axalta - motor insulation |
| 8.3.4. | Huntsman - epoxy encapsulation and impregnation |
| 8.3.5. | Sumitomo Bakelite - composite stator encapsulation |
| 8.3.6. | Elantas - insulation systems for 800V motors |
| 8.4. | Emerging motor technologies |
| 8.4.1. | Axial flux motors |
| 8.4.2. | Axial flux motors enter the EV market |
| 8.4.3. | Thermal management for axial flux motors |
| 8.4.4. | In-wheel motors |
| 8.5. | Thermal management of EV motors: OEM use-cases |
| 8.5.1. | Audi e-tron |
| 8.5.2. | Audi Q4 e-tron |
| 8.5.3. | BMW i3 |
| 8.5.4. | BMW 5th gen drive |
| 8.5.5. | Bosch - commercial vehicle motors |
| 8.5.6. | Chevrolet Bolt (2017-2021) |
| 8.5.7. | Equipmake: spoke geometry |
| 8.5.8. | Ford Mustang Mach-E |
| 8.5.9. | GM Ultium Drive |
| 8.5.10. | Jaguar I-PACE |
| 8.5.11. | Huawei - intelligent oil cooling |
| 8.5.12. | Hyundai E-GMP |
| 8.5.13. | Koenigsegg - raxial flux |
| 8.5.14. | LiveWire (Harley Davidson) |
| 8.5.15. | MAHLE - magnet free oil cooled motor |
| 8.5.16. | Mercedes EQ |
| 8.5.17. | Nidec - Gen.2 drive |
| 8.5.18. | Nissan Leaf |
| 8.5.19. | Rivian |
| 8.5.20. | SAIC - oil cooling system |
| 8.5.21. | Schaeffler - truck motors |
| 8.5.22. | Tesla Model S (pre-2021) |
| 8.5.23. | Tesla Model 3 |
| 8.5.24. | Toyota Prius |
| 8.5.25. | VW ID3/ID4 |
| 8.5.26. | Yamaha - hypercar electric motor |
| 8.5.27. | ZF - commercial vehicle motors |
| 9. | THERMAL MANAGEMENT IN ELECTRIC VEHICLE POWER ELECTRONICS |
| 9.1. | Introduction and technology evolution |
| 9.1.1. | What is power electronics? |
| 9.1.2. | Power electronics in electric vehicles |
| 9.1.3. | Power electronics device power ranges |
| 9.1.4. | Power switches (transistors) |
| 9.1.5. | Power switch history |
| 9.1.6. | Wide-bandgap semiconductors |
| 9.1.7. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride |
| 9.1.8. | Applications for SiC & GaN |
| 9.1.9. | Drivers for 800V platforms |
| 9.1.10. | The Transition to SiC |
| 9.1.11. | Inverter power modules |
| 9.1.12. | Inverter package designs |
| 9.1.13. | Traditional power module packaging |
| 9.1.14. | Module packaging material dimensions |
| 9.1.15. | Single side, double side, direct, and direct cooling |
| 9.1.16. | Double-sided cooling |
| 9.1.17. | Double-sided cooling examples |
| 9.1.18. | Baseplate, heat sink, and encapsulation materials |
| 9.2. | Wire bonds and alternatives |
| 9.2.1. | Wire bonds |
| 9.2.2. | Al wire bonds: a common failure point |
| 9.2.3. | Advanced wire bonding techniques |
| 9.2.4. | Tesla's novel bonding technique |
| 9.2.5. | Direct lead bonding (Mitsubishi) |
| 9.2.6. | Die top system - Heraeus |
| 9.2.7. | Wire bond technology by supplier |
| 9.3. | Die attach and future materials |
| 9.3.1. | Die and substrate attach are common failure modes |
| 9.3.2. | Which solder for wide bandgap? |
| 9.3.3. | Why metal sintering for power electronics? |
| 9.3.4. | Challenges with Ag sintering |
| 9.3.5. | Simplifications to the manufacturing process |
| 9.3.6. | Gamechanger? Threats to Ag - Cu sintering pastes |
| 9.3.7. | Sintering: die-to-substrate, substrate-baseplate or heat sink, die pad to interconnect, etc.) |
| 9.3.8. | Evolution of Tesla's power electronics |
| 9.3.9. | Die attach technology evolution |
| 9.3.10. | Die attach technology by supplier |
| 9.4. | Substrate materials and future alternatives |
| 9.4.1. | The choice of ceramic substrate technology |
| 9.4.2. | The choice of ceramic substrate technology |
| 9.4.3. | AlN: overcoming its mechanical weakness |
| 9.4.4. | Thermal conductivity vs thermal expansion |
| 9.4.5. | Ceramics: CTE mismatch |
| 9.4.6. | Approaches to metallisation: DPC, DBC, AMB and thick film metallisation |
| 9.4.7. | Direct plated copper (DPC): pros and cons |
| 9.4.8. | Double bonded copper (DBC): pros and cons |
| 9.4.9. | Active metal brazing (AMB): pros and cons |
| 9.4.10. | Thick film printing |
| 9.4.11. | Heraeus - materials for power electronics |
| 9.4.12. | ALMT - MgSiC baseplate |
| 9.5. | Removing thermal interface materials |
| 9.5.1. | Why TIM is used in power electronics |
| 9.5.2. | Why the drive to eliminate the TIM? |
| 9.5.3. | Thermal grease: other shortcomings |
| 9.5.4. | EV inverter modules where TIM has been eliminated (1) |
| 9.5.5. | EV inverter modules where TIM has been eliminated (2) |
| 9.5.6. | Infineon - pre-applied TIM |
| 9.5.7. | IGBTs and SiC are not the only TIM area in inverters |
| 9.6. | Power electronics packages: EV use-cases |
| 9.7. | Toyota Prius 2004-2010 |
| 9.8. | 2008 Lexus |
| 9.9. | Toyota Prius 2010-2015 |
| 9.10. | Nissan Leaf 2012 |
| 9.11. | Honda Accord 2014 |
| 9.12. | Honda Fit (by Mitsubishi) |
| 9.13. | Toyota Prius 2016 onwards |
| 9.14. | Chevrolet Volt 2016 (by Delphi) |
| 9.15. | Cadillac 2016 (by Hitachi) |
| 9.16. | Audi e-tron 2018 |
| 9.17. | BWM i3 (by Infineon) |
| 9.18. | Infineon |
| 9.19. | Delphi, Cree, Oak Ridge National Laboratory, and Volvo |
| 9.20. | Tesla's SiC package |
| 9.21. | What does this mean for the MOSFET package? |
| 9.22. | STMicro |
| 9.23. | Continental / Jaguar Land Rover inverter |
| 9.24. | Nissan Leaf custom inverter design |
| 9.25. | Hyundai E-GMP (Infineon) |
| 9.26. | Danfoss |
| 9.27. | BorgWarner |
| 9.28. | onsemi |
| 9.29. | Cooling power electronics: water or oil |
| 9.29.1. | Inverter package cooling |
| 9.29.2. | Drivers for direct oil cooling of inverters |
| 9.29.3. | Advantages, disadvantages and drivers for oil cooled inverters |
| 9.29.4. | Direct oil cooling projects |
| 9.29.5. | Inverter cooling strategy forecast (units) |
| 9.29.6. | Liquid cooled inverter examples |
| 10. | SUMMARY OF FORECASTS |
| 10.1. | Forecast methodology |
| 10.2. | BEV cars with heat pumps forecast (units) |
| 10.3. | Battery thermal management strategy forecast (GWh) |
| 10.4. | Immersion fluid volume forecast (passenger cars, liters) |
| 10.5. | Immersion fluid volume forecast (construction and agriculture EVs, liters) |
| 10.6. | TIM Forecast for EV batteries by TIM type (kg) |
| 10.7. | TIM forecast for EV batteries by TIM type (revenue, US$) |
| 10.8. | TIM Forecast for EV batteries by vehicle type (kg and US$) |
| 10.9. | Fire protection materials forecast (kg) |
| 10.10. | Motor cooling strategy forecast (units) |
| 10.11. | Inverter cooling strategy forecast (units) |
| 11. | COMPANY PROFILES |
| 11.1. | ADA Technologies |
| 11.2. | Amphenol Advanced Sensors |
| 11.3. | Asahi Kasei |
| 11.4. | Aspen Aerogels |
| 11.5. | Axalta |
| 11.6. | Beam Global/AllCell |
| 11.7. | Bostik |
| 11.8. | Cadenza Innovation |
| 11.9. | CSM |
| 11.10. | DuPont |
| 11.11. | e-Mersiv |
| 11.12. | Elkem |
| 11.13. | Engineered Fluids |
| 11.14. | FUCHS |
| 11.15. | H.B. Fuller |
| 11.16. | Henkel |
| 11.17. | Huber Martinswerk |
| 11.18. | JIOS Aerogel |
| 11.19. | M&I Materials |
| 11.20. | NeoGraf |
| 11.21. | Nexperia |
| 11.22. | Parker Lord |
| 11.23. | PST Sensors |
| 11.24. | Rogers Corporation |
| 11.25. | Romeo Power |
| 11.26. | Solvay Specialty Polymers |
| 11.27. | Ultimate Transmissions |
| 11.28. | Voltabox |
| 11.29. | Von Roll |
| 11.30. | WACKER |
| 11.31. | Xerotech |
| 11.32. | XING Mobility |
| 11.33. | Zeon |