| 1. | EXECUTIVE SUMMARY |
| 1.1. | IDTechEx Air Taxis: Electric Vertical Take-Off and Landing Aircraft Report |
| 1.2. | What is an eVTOL Aircraft? |
| 1.3. | Main eVTOL Architectures |
| 1.4. | Why eVTOL Aircraft? |
| 1.5. | Huge Companies are Already Investing in eVTOL |
| 1.6. | eVTOL Getting Off the Ground |
| 1.7. | The eVTOL Market is Very Crowded |
| 1.8. | 2024 OEM Updates |
| 1.9. | eVTOLs Have Attracted Significant Commercial Interest |
| 1.10. | eVTOL OEMs are Attracting Large Funding |
| 1.11. | New Manufacturing Facilities and Production Plans |
| 1.12. | eVTOL OEMs will Have to Weather a Tougher Investor Climate |
| 1.13. | When will the First eVTOL Air Taxis Launch? Slipping Timelines as Market Entry Draws Closer |
| 1.14. | Air Taxi Services |
| 1.15. | Conclusions on Air Taxi Time Saving |
| 1.16. | eVTOL as an Urban Mass Mobility Solution? |
| 1.17. | Where is the eVTOL Air Taxi Advantage? |
| 1.18. | The Value of Autonomous Flight |
| 1.19. | eVTOL: Summary of Enabling Technologies |
| 1.20. | The Need for Component Improvements |
| 1.21. | eVTOL Battery Requirements |
| 1.22. | Lithium-based Batteries Beyond Li-ion |
| 1.23. | Li-ion Timeline - Technology and Performance |
| 1.24. | eVTOL Motor / Powertrain Requirements |
| 1.25. | eVTOL Composite Material Requirements |
| 1.26. | eVTOL Infrastructure Requirements |
| 1.27. | Companies Developing Vertiports |
| 1.28. | Forecast Summary |
| 1.29. | eVTOL Air Taxi Sales Forecast 2020-2044 (Units) |
| 1.30. | eVTOL Air Taxi Battery Demand Forecast 2020-2044 (GWh) |
| 1.31. | eVTOL Battery Market Revenue Forecast (US$ million) |
| 1.32. | eVTOL Air Taxi Market Revenue Forecast (US$ billion) |
| 2. | INTRODUCTION |
| 2.1. | What is an eVTOL Aircraft? |
| 2.2. | eVTOL Architectures |
| 2.3. | Distributed Electric Propulsion |
| 2.4. | The Dream of Urban Air Mobility |
| 2.5. | Advantages of UAM Networks |
| 2.6. | Advanced Air Mobility |
| 2.7. | eVTOL Applications |
| 2.8. | Air Taxi Services |
| 2.9. | Current General Aviation Aircraft |
| 2.10. | Why Helicopters are not Suitable for UAM |
| 2.11. | Range and Endurance Limitations of eVTOL |
| 2.12. | GAMA General Aviation Helicopter Sales and Market |
| 2.13. | Worldwide Helicopter Fleet |
| 2.14. | Helicopter OEMs |
| 2.15. | GAMA General Aviation Airplane Sales and Market Size |
| 2.16. | Top 5 General Aviation OEMs by Airplane Type |
| 2.17. | What is Making eVTOL Possible? |
| 2.18. | Why eVTOL Aircraft? |
| 2.19. | eVTOL Air Taxis: Much More than New Aircraft |
| 2.20. | Huge Companies are Already Investing in eVTOL |
| 2.21. | Air Mobility Funding |
| 2.22. | Market Outlook |
| 2.23. | Significant Challenges |
| 2.24. | Numerous Opportunities |
| 2.25. | NASA: UAM Challenges and Constraints |
| 2.26. | Key Issues for eVTOL Air Taxis |
| 3. | AEROSPACE SUPPLIERS EVTOL AIRCRAFT ACTIVITY |
| 3.1. | Aerospace Companies by Revenue |
| 3.2. | RTX Corp. |
| 3.3. | General Electric |
| 3.4. | SAFRAN |
| 3.5. | Rolls-Royce |
| 3.6. | Honeywell |
| 4. | JOURNEY USE-CASES & OPTIMISATION: WHERE EVTOL HAS AN ADVANTAGE |
| 4.1. | Will eVTOL Taxis Reduce Journey Time? |
| 4.2. | eVTOL Multicopter vs Robotaxi: 10km Journey |
| 4.3. | eVTOL vs Robotaxi: Example 10km Journey |
| 4.4. | eVTOL Multicopter vs Robotaxi: 40km Journey |
| 4.5. | eVTOL vs Robotaxi: Example 40km Journey |
| 4.6. | Multicopter eVTOL vs Robotaxi: 100km Journey |
| 4.7. | Vectored Thrust eVTOL vs Robotaxi: 100km Journey |
| 4.8. | eVTOL vs Robotaxi: Example 100km Journey |
| 4.9. | Important Factors for an Air Taxi Time Advantage |
| 4.10. | Conclusions on Air Taxi Time Saving |
| 5. | IDTECHEX COST ANALYSIS |
| 5.1. | TCO Analysis: eVTOL Taxi US$/50km Trip (Base Case) |
| 5.2. | eVTOL vs Helicopter Operating Cost |
| 5.3. | eVTOL Aircraft Upfront Cost |
| 5.4. | eVTOL Operational Fuel Cost Savings |
| 5.5. | The Value of Autonomous Flight |
| 5.6. | TCO vs Helicopters Uber Air US$/mile |
| 5.7. | Sensitivity to Battery Cost and Performance |
| 5.8. | Sensitivity to Upfront / Infrastructure Cost |
| 5.9. | Sensitivity to Average Trip Length |
| 5.10. | TCO Analysis: US$/15km Trip: Multicopter eVTOL Design |
| 5.11. | TCO US$/15km Autonomous Trip: Multicopter vs Base Case |
| 6. | EVTOL ARCHITECTURES |
| 6.1. | World eVTOL Aircraft Directory |
| 6.2. | Geographical Distribution of eVTOL Projects |
| 6.3. | Key Players: eVTOL Air Taxi |
| 6.4. | Main eVTOL Architectures |
| 6.5. | eVTOL Architecture Choice |
| 6.6. | eVTOL Multicopter / Rotorcraft |
| 6.7. | Multicopter: Flight Modes |
| 6.8. | Multicopter / Rotorcraft: Key Players Specifications |
| 6.9. | Benefits / Drawbacks of Multicopters |
| 6.10. | eVTOL Lift + Cruise |
| 6.11. | Lift + Cruise: Flight Modes |
| 6.12. | Lift + Cruise: Key Players Specifications |
| 6.13. | Benefits / Drawbacks of Lift + Cruise |
| 6.14. | Vectored Thrust eVTOL |
| 6.15. | Vectored Thrust: Flight Modes |
| 6.16. | eVTOL Vectored Thrust: Tiltwing |
| 6.17. | Tiltwing: Key Player Specifications |
| 6.18. | Benefits / Drawbacks of Tiltwing |
| 6.19. | eVTOL Vectored Thrust: Tiltrotor |
| 6.20. | Tiltrotor: Key Player Specifications |
| 6.21. | Benefits / Drawbacks of Tiltrotor |
| 6.22. | When will the First eVTOL Air Taxis Launch? |
| 6.23. | Manned Air Taxi eVTOL Test Flights |
| 6.24. | Unmanned Air Taxi eVTOL Model Test Flights |
| 6.25. | Range and Cruise Speed: Electric eVTOL Designs |
| 6.26. | Hover Lift Efficiency and Disc Loading |
| 6.27. | Hover and Cruise Efficiency by eVTOL Architecture |
| 6.28. | Complexity, Criticality & Cruise Performance |
| 6.29. | Comparison of eVTOL Architectures |
| 7. | PROGRAMS SUPPORTING EVTOL DEVELOPMENT |
| 7.1. | Uber Elevate - Joby Aviation |
| 7.2. | Driving Air Taxi Progress: Uber Elevate |
| 7.3. | Uber Elevate: Strategic OEM Vehicle Partnerships |
| 7.4. | Uber Air Vehicle Requirements |
| 7.5. | Uber Air Mission Profile |
| 7.6. | US Airforce eVTOL Support - Agility Prime |
| 7.7. | US Airforce - Agility Prime |
| 7.8. | Agility Prime: Advance Air Mobility Ecosystem |
| 7.9. | NASA: Advanced Air Mobility Mission |
| 7.10. | NASA: Advanced Air Mobility National Campaign |
| 7.11. | Groupe ADP eVTOL Test Area |
| 7.12. | China's Unmanned Civil Aviation Zones |
| 7.13. | Favourable Policies and Regulations Supporting China's UAM / Low-Altitude Economy |
| 7.14. | K-UAM Grand Challenge: South Korea |
| 7.15. | UK's Future Flight Challenge |
| 7.16. | Varon Vehicles: UAM in Latin America |
| 8. | OEM MARKET PLAYERS |
| 8.1. | Air |
| 8.2. | Airbus |
| 8.3. | Airbus A3 (Acubed): Vahana |
| 8.4. | Vahana Controls and Redundancy |
| 8.5. | Airbus Helicopters: CityAirbus |
| 8.6. | Airbus: CityAirbus NextGen |
| 8.7. | Airbus eVTOL Projects |
| 8.8. | Archer Aviation |
| 8.9. | Archer and Stellantis Partnership |
| 8.10. | Autoflight: Prosperity I |
| 8.11. | Bell Textron |
| 8.12. | Bell Textron: Nexus |
| 8.13. | Bell Textron: Experimental eVTOL Concepts |
| 8.14. | Bell Textron - Key eVTOL Partnerships |
| 8.15. | BETA Technologies |
| 8.16. | EHang |
| 8.17. | EHang 216 |
| 8.18. | EHang |
| 8.19. | Embraer: Eve (EmbraerX) |
| 8.20. | Eve Air Mobility - Suppliers |
| 8.21. | Jaunt Air Mobility: Journey Air Taxi |
| 8.22. | Jaunt Air Mobility |
| 8.23. | Jaunt Air Mobility - Key Partners |
| 8.24. | Joby Aviation |
| 8.25. | Lilium |
| 8.26. | Lilium - Key Suppliers |
| 8.27. | Lilium |
| 8.28. | SkyDrive |
| 8.29. | SkyDrive - Key Suppliers |
| 8.30. | Supernal (Hyundai): S-A2 |
| 8.31. | Vertical Aerospace |
| 8.32. | Vertical Aerospace - Key Suppliers |
| 8.33. | Volocopter: VoloCity |
| 8.34. | Volocopter |
| 8.35. | Wisk Aero |
| 8.36. | Wisk Aero - Cora |
| 8.37. | Players Planned Production Capacity Comparison |
| 8.38. | IDTechEx Portal Company Profiles - OEM |
| 9. | BATTERIES FOR EVTOL |
| 9.1. | Battery Specifics for eVTOLs |
| 9.2. | What is a Li-ion Battery? |
| 9.3. | Electrochemistry Definitions |
| 9.4. | The Battery Trilemma |
| 9.5. | Battery Wish List for an eVTOL |
| 9.6. | Li-ion Cathode Benchmark |
| 9.7. | Li-ion Anode Benchmark |
| 9.8. | Li-ion Timeline - Technology and Performance |
| 9.9. | eVTOL Battery Requirements |
| 9.10. | The Promise of Silicon |
| 9.11. | Airbus Minimum Battery Requirement |
| 9.12. | eVTOL Battery Range Calculation |
| 9.13. | Aerospace Battery Pack Sizing |
| 9.14. | Importance of Battery Pack Energy Density |
| 9.15. | Importance of eVTOL Lift/Drag to Range |
| 9.16. | Uber Air Proposed Battery Requirements |
| 9.17. | Battery Size |
| 9.18. | Battery Specifications of eVTOL OEMs |
| 9.19. | Batteries Packs: More than Just Cells |
| 9.20. | Eliminating the Battery Module |
| 9.21. | eVTOL Batteries: Specific Energy Vs Discharge Rates |
| 9.22. | Battery500 |
| 9.23. | Lilium Battery Technology Outlook |
| 9.24. | E-One Moli Energy Corp. (Molicel) |
| 9.25. | Electric Power Systems (EPS): Li-ion Batteries |
| 9.26. | Electric Power Systems (EPS) - Partners |
| 9.27. | Amprius Inc: Silicon Anode |
| 9.28. | Moving on from Li-ion? |
| 9.29. | Lithium-based Batteries Beyond Li-ion |
| 9.30. | Lithium-Sulfur Batteries (Li-S) |
| 9.31. | Advantages of LSBs |
| 9.32. | Li-Sulfur Energy Density |
| 9.33. | OXIS Energy: Lithium-Sulfur Batteries |
| 9.34. | Lithium-Metal and Solid-State Batteries (SSB) |
| 9.35. | Solid Energy Systems - Solid State Batteries |
| 9.36. | Sion Power Corporation: Lithium-Metal Battery |
| 9.37. | Cuberg (Northvolt): Lithium Metal Anode Batteries |
| 9.38. | CATL: Condensed Battery |
| 9.39. | Battery Chemistry Comparison for eVTOL |
| 9.40. | Battery Fast Charging |
| 9.41. | Battery Swapping |
| 9.42. | Distributed Battery Modules |
| 9.43. | eVTOL Battery Cost |
| 9.44. | eVTOL Battery Supply Chain |
| 9.45. | Development Focus for eVTOL Batteries |
| 10. | CHARGING STANDARDS FOR EVTOL |
| 10.1. | Competing Charging Standards in the AAM Market |
| 10.2. | Global Electric Aviation Charging System (GEACS) |
| 10.3. | Beta Charging Technologies (CCS) |
| 10.4. | EPS Charging Solutions |
| 11. | FUEL CELL EVTOL |
| 11.1. | Options For Hydrogen Use In Aviation |
| 11.2. | Key Systems Needed For Hydrogen Aircraft |
| 11.3. | Proton Exchange Membrane Fuel Cells |
| 11.4. | Comparison of Technology Options |
| 11.5. | Grey Hydrogen |
| 11.6. | Major Challenges Hindering Hydrogen Aviation |
| 11.7. | Smaller hydrogen FC aircraft: drones & eVTOL |
| 11.8. | Hydrogen Aviation Company Landscape |
| 11.9. | Fuel Cell eVTOL |
| 11.10. | Conclusions for Hydrogen Fuel Cell eVTOL |
| 12. | HYBRID EVTOL |
| 12.1. | Electric Propulsion System |
| 12.2. | Conventional Propulsion Systems |
| 12.3. | Hybrid Propulsion Systems |
| 12.4. | Hybrid Systems Optimisation |
| 12.5. | All-Electric Range vs Fuel Cell and Hybrid Powertrains |
| 12.6. | Hybrid Propulsion: Turbines and Piston Engines |
| 12.7. | Honda eVTOL Hybrid-electric Propulsion System |
| 12.8. | Conclusions for Hybrid eVTOL |
| 13. | ELECTRIC MOTORS |
| 13.1. | eVTOL Motor / Powertrain Requirements |
| 13.2. | eVTOL Aircraft Motor Power Sizing |
| 13.3. | eVTOL Power Requirement: kW Estimate |
| 13.4. | eVTOL Power Requirement |
| 13.5. | eVTOL Power Requirement: kW Estimate |
| 13.6. | Electric Motors and Distributed Electric Propulsion |
| 13.7. | eVTOL Number of Electric Motors |
| 13.8. | Motor Sizing |
| 13.9. | Electric Motor Designs |
| 13.10. | Summary of Traction Motor Types |
| 13.11. | Comparison of Traction Motor Construction and Merits |
| 13.12. | Motor Efficiency Comparison |
| 13.13. | Differences Between PMSM and BLDC |
| 13.14. | Radial Flux Motors |
| 13.15. | Axial Flux Motors |
| 13.16. | Radial Flux vs Axial Flux Motors |
| 13.17. | Yoked vs Yokeless Axial Flux |
| 13.18. | Why Axial Flux Motors in eVTOL? |
| 13.19. | List of Axial Flux Motor Players |
| 13.20. | Benchmark of Commercial Axial Flux Motors |
| 13.21. | YASA Axial Flux Motors |
| 13.22. | Daimler Acquires YASA |
| 13.23. | Rolls-Royce / Siemens |
| 13.24. | Rolls-Royce / Siemens |
| 13.25. | EMRAX |
| 13.26. | ePropelled |
| 13.27. | H3X |
| 13.28. | MAGicALL |
| 13.29. | magniX |
| 13.30. | MGM COMPRO |
| 13.31. | SAFRAN |
| 13.32. | Other Player Examples |
| 13.33. | Power Density Comparison: Motors for Aviation |
| 13.34. | Torque Density Comparison: Motors for Aviation |
| 14. | COMPOSITE MATERIALS & LIGHTWEIGHTING |
| 14.1. | Composite Materials - Lightweighting |
| 14.2. | What is Lightweighting? |
| 14.3. | Lightweight Material Drivers |
| 14.4. | Comparison of Lightweight Materials |
| 14.5. | Lightweight Material Candidates |
| 14.6. | Introduction to Composites |
| 14.7. | Introduction to Composite Materials |
| 14.8. | Comparison of Relative Fibre Properties |
| 14.9. | Cost Adjusted Fibre Properties |
| 14.10. | Supply Chain for Composite Manufacturers |
| 14.11. | Carbon Fibre Reinforced Polymer (CFRP) |
| 14.12. | Glass Fibres |
| 14.13. | FRP/PMC Introduction |
| 14.14. | Resins - Overview and Property Comparison |
| 14.15. | Thermoplastics for Composites - Overview |
| 14.16. | Thermosetting Resins - Key Resins |
| 14.17. | Key Challenges for Composites |
| 14.18. | eVTOL Composite Material Requirements |
| 14.19. | Composite Materials - Toray / Joby Aviation |
| 14.20. | Composite Materials - Toray / Lilium |
| 14.21. | Composite Materials - BFT / Beta |
| 14.22. | Composite Materials - Triumph / Jaunt |
| 14.23. | Composite Materials - GKN Aerospace / Supernal |
| 14.24. | Composite Materials - GKN Aerospace / Bell |
| 14.25. | Composite Materials - Hexcel |
| 15. | REGULATION |
| 15.1. | eVTOL Certification |
| 15.2. | Companies Pursuing eVTOL Development and Regulatory Approval |
| 15.3. | eVTOL Regulation |
| 15.4. | European Union Aviation Safety Agency (EASA) |
| 15.5. | EASA Special Condition: SC-VTOL |
| 15.6. | EASA Certification Categories |
| 15.7. | EASA EUROCAE Working Groups |
| 15.8. | European Union Aviation Safety Agency (EASA) |
| 15.9. | US Federal Aviation Administration (FAA) |
| 15.10. | What is FAA Certification? |
| 15.11. | Civil Aviation Authority of China (CAAC) |
| 16. | VERTIPORT INFRASTRUCTURE FOR EVTOL |
| 16.1. | eVTOL Infrastructure Requirements |
| 16.2. | Skyport / Vertiports |
| 16.3. | Vertiport Nodal Network |
| 16.4. | Companies Developing Vertiports |
| 16.5. | Infrastructure for Vertiports |
| 16.6. | CORGAN |
| 16.7. | CORGAN: Meeting Operational Demand |
| 16.8. | CORGAN: Stacked Skyports |
| 16.9. | CORGAN |
| 16.10. | CORGAN's Mega Skyport |
| 16.11. | CORGAN Uber Skyport Mobility Hub |
| 16.12. | CORGAN Uber Skyport Mobility Hub |
| 16.13. | MVRDV |
| 16.14. | Hyundai Future Mobility Vision |
| 16.15. | Groupe ADP |
| 16.16. | Lilium Scalable Vertiports |
| 16.17. | Skyports |
| 16.18. | VoloPort |
| 16.19. | Beta Technologies Recharge Pad |
| 16.20. | EHang E-Port |
| 16.21. | Uber Air Mega Skyport Concepts 2018 |
| 16.22. | Uber Air Skyport Mobility Hub Concepts 2019 |
| 16.23. | eVTOL Urban Air Traffic Management (UATM) |
| 16.24. | eVTOL Urban Air Traffic Management (UATM) |
| 16.25. | UAM Traffic Management |
| 17. | FORECASTS |
| 17.1. | Forecast Summary |
| 17.2. | Global eVTOL Sales Forecast 2024-2044: Methodology |
| 17.3. | eVTOL Air Taxi Sales Forecast (Units) |
| 17.4. | eVTOL Air Taxi Sales Forecast by World Bank Country Wealth Definition and Economy Size (Units) |
| 17.5. | eVTOL Air Taxi Battery Demand Forecast (GWh) |
| 17.6. | eVTOL Battery Market Revenue Forecast (US$ million) |
| 17.7. | eVTOL forecast: Average eVTOL Battery Size 2020-2044 |
| 17.8. | eVTOL Air Taxi Market Revenue Forecast (US$ billion) |
| 17.9. | eVTOL forecast: Average eVTOL Price 2020-2044 |