| 1. | EXECUTIVE SUMMARY | 
| 1.1. | Edge AI | 
| 1.2. | IDTechEx definition of Edge AI | 
| 1.3. | Edge vs Cloud characteristics | 
| 1.4. | Advantages and disadvantages of edge AI | 
| 1.5. | Edge devices that employ AI chips | 
| 1.6. | The edge AI chip landscape - overview | 
| 1.7. | The edge AI chip landscape - key hardware players | 
| 1.8. | The edge AI chip landscape - hardware start-ups | 
| 1.9. | The AI chip landscape - other than hardware | 
| 1.10. | Edge AI landscape - geographic split: China | 
| 1.11. | Edge AI landscape - geographic split: North America | 
| 1.12. | Edge AI landscape - geographic split: Rest of World | 
| 1.13. | Inference at the edge | 
| 1.14. | Deep learning: How an AI algorithm is implemented | 
| 1.15. | AI chip capabilities | 
| 2. | FORECASTS | 
| 2.1. | Total revenue forecast | 
| 2.2. | Methodology and analysis | 
| 2.3. | Estimating annual revenue from smartphone chipsets | 
| 2.4. | Smartphone chipset costs | 
| 2.5. | Costs garnered by AI in smartphone chipsets | 
| 2.6. | Revenue forecast by geography | 
| 2.7. | Percentage shares of market by geography | 
| 2.8. | Chip types: architecture | 
| 2.9. | Forecast by chip type | 
| 2.10. | Semiconductor packaging timeline | 
| 2.11. | From 1D to 3D semiconductor packaging | 
| 2.12. | 2D packaging - System-on-Chip | 
| 2.13. | 2D packaging - Multi-Chip Modules | 
| 2.14. | 2.5D and 3D packaging - System-in-Package | 
| 2.15. | 3D packaging - System-on-Package | 
| 2.16. | Forecast by packaging | 
| 2.17. | Consumer vs Enterprise forecast | 
| 2.18. | Forecast by application | 
| 2.19. | Forecast by industry vertical | 
| 2.20. | Forecast by industry vertical - full | 
| 3. | TECHNOLOGY: FROM SEMICONDUCTOR WAFERS TO AI CHIPS | 
| 3.1. | Wafer and chip manufacture processes | 
| 3.1.1. | Raw material to wafer: process flow | 
| 3.1.2. | Wafer to chip: process flow | 
| 3.1.3. | Wafer to chip: process flow | 
| 3.1.4. | The initial deposition stage | 
| 3.1.5. | Thermal oxidation | 
| 3.1.6. | Oxidation by vapor deposition | 
| 3.1.7. | Photoresist coating | 
| 3.1.8. | How a photoresist coating is applied | 
| 3.1.9. | Lithography | 
| 3.1.10. | Lithography: DUV | 
| 3.1.11. | Lithography: Enabling higher resolution | 
| 3.1.12. | Lithography: EUV | 
| 3.1.13. | Etching | 
| 3.1.14. | Deposition and ion implantation | 
| 3.1.15. | Deposition of thin films | 
| 3.1.16. | Silicon Vapor Phase Epitaxy | 
| 3.1.17. | Atmospheric Pressure CVD | 
| 3.1.18. | Low Pressure CVD and Plasma-Enhanced CVD | 
| 3.1.19. | Atomic Layer Deposition | 
| 3.1.20. | Molecular Beam Epitaxy | 
| 3.1.21. | Evaporation and Sputtering | 
| 3.1.22. | Ion Implantation: Generation | 
| 3.1.23. | Ion Implantation: Penetration | 
| 3.1.24. | Metallization | 
| 3.1.25. | Wafer: The final form | 
| 3.1.26. | Semiconductor supply chain players | 
| 3.2. | Transistor technology | 
| 3.2.1. | How transistors operate: p-n junctions | 
| 3.2.2. | How transistors operate: electron shells | 
| 3.2.3. | How transistors operate: valence electrons | 
| 3.2.4. | How transistors work: back to p-n junctions | 
| 3.2.5. | How transistors work: connecting a battery | 
| 3.2.6. | How transistors work: PNP operation | 
| 3.2.7. | How transistors work: PNP | 
| 3.2.8. | How transistors switch | 
| 3.2.9. | From p-n junctions to FETs | 
| 3.2.10. | How FETs work | 
| 3.2.11. | Moore's law | 
| 3.2.12. | Gate length reductions | 
| 3.2.13. | FinFET | 
| 3.2.14. | GAAFET, MBCFET, RibbonFET | 
| 3.2.15. | Process nodes | 
| 3.2.16. | Device architecture roadmap | 
| 3.2.17. | Evolution of transistor device architectures | 
| 3.2.18. | Carbon nanotubes for transistors | 
| 3.2.19. | CNTFET designs | 
| 3.2.20. | Semiconductor foundry node roadmap | 
| 3.2.21. | Roadmap for advanced nodes | 
| 4. | EDGE INFERENCE AND KEY APPLICATIONS | 
| 4.1. | Inference at the edge and benchmarking | 
| 4.1.1. | Edge AI | 
| 4.1.2. | Edge vs Cloud characteristics | 
| 4.1.3. | Advantages and disadvantages of edge AI | 
| 4.1.4. | Edge devices that employ AI chips | 
| 4.1.5. | AI in smartphones and tablets | 
| 4.1.6. | Recent history: Siri | 
| 4.1.7. | Text-to-speech | 
| 4.1.8. | AI in personal computers | 
| 4.1.9. | AI chip basics | 
| 4.1.10. | Parallel computing | 
| 4.1.11. | Low-precision computing | 
| 4.1.12. | AI in speakers | 
| 4.1.13. | AI in smart appliances | 
| 4.1.14. | AI in automotive vehicles | 
| 4.1.15. | AI in sensors and structural health monitoring | 
| 4.1.16. | AI in security cameras | 
| 4.1.17. | AI in robotics | 
| 4.1.18. | AI in wearables and hearables | 
| 4.1.19. | The edge AI chip landscap | 
| 4.1.20. | Inference at the edge | 
| 4.1.21. | Deep learning: How an AI algorithm is implemented | 
| 4.1.22. | AI chip capabilities | 
| 4.1.23. | AI chip capabilities | 
| 4.1.24. | MLPerf - Inference | 
| 4.1.25. | MLPerf Edge | 
| 4.1.26. | Inference: Edge, Nvidia vs Nvidia | 
| 4.1.27. | MLPerf Mobile - Qualcomm HTP | 
| 4.1.28. | The battle for domination: Qualcomm vs MediaTek | 
| 4.1.29. | MLPerf Tiny | 
| 4.2. | AI in smartphones | 
| 4.2.1. | Mobile device competitive landscape | 
| 4.2.2. | Samsung and Oppo chipsets | 
| 4.2.3. | US restrictions on China | 
| 4.2.4. | Smartphone chipset landscape 2022 - Present | 
| 4.2.5. | MediaTek and Qualcomm 2020 - Present | 
| 4.2.6. | AI processing in smartphones: 2020 - Present | 
| 4.2.7. | Node concentrations 2020 - Present | 
| 4.2.8. | Chipset concentrations 2020 - Present | 
| 4.2.9. | Chipset designer concentrations 2020 - Present | 
| 4.2.10. | Node concentrations for each chipset designer | 
| 4.2.11. | AI-capable versus non AI-capable smartphones | 
| 4.2.12. | Chipset volume: 2021 and 2022 | 
| 4.3. | AI in tablets | 
| 4.3.1. | Tablet competitive landscape | 
| 4.3.2. | Tablet chipset landscape 2020 - Present | 
| 4.3.3. | AI processing in tablets: 2020 - Present | 
| 4.3.4. | Node concentrations 2020 - Present | 
| 4.3.5. | Chipset designer concentrations 2021 - Present | 
| 4.3.6. | Node concentrations for each chipset designer | 
| 4.3.7. | AI-capable versus non AI-capable tablets | 
| 4.4. | AI in automotive | 
| 4.4.1. | AI in automobiles: Competitive landscape | 
| 4.4.2. | Levels of driving automation | 
| 4.4.3. | Computational efficiencies | 
| 4.4.4. | AI chips for automotive vehicles | 
| 4.4.5. | Performance and node trends | 
| 4.4.6. | Rising power consumption | 
| 5. | SUPPLY CHAIN PLAYERS | 
| 5.1. | Smartphone chipset case studies | 
| 5.1.1. | MediaTek: Dimensity and APU | 
| 5.1.2. | Qualcomm: MLPerf results - Inference Mobile and Inference Tiny | 
| 5.1.3. | Qualcomm: Mobile AI | 
| 5.1.4. | Apple: Neural Engine | 
| 5.1.5. | Apple: The ANE's capabilities and shortcomings | 
| 5.1.6. | Google: Pixel Neural Core and Pixel Tensor | 
| 5.1.7. | Google: Edge TPU | 
| 5.1.8. | Samsung: Exynos | 
| 5.1.9. | Huawei: Kirin chipsets | 
| 5.1.10. | Unisoc: T618 and T710 | 
| 5.2. | Automotive case studies | 
| 5.2.1. | Nvidia: DRIVE AGX Orin and Thor | 
| 5.2.2. | Qualcomm: Snapdragon Ride Flex | 
| 5.2.3. | Ambarella: CV3-AD685 for automotive applications | 
| 5.2.4. | Ambarella: CVflow architecture | 
| 5.2.5. | Hailo | 
| 5.2.6. | Blaize | 
| 5.2.7. | Tesla: FSD | 
| 5.2.8. | Horizon Robotics: Journey 5 | 
| 5.2.9. | Horizon Robotics: Journey 5 Architecture | 
| 5.2.10. | Renesas: R-Car 4VH | 
| 5.2.11. | Mobileye | 
| 5.2.12. | Mobileye: EyeQ Ultra | 
| 5.2.13. | Texas Instruments: TDA4VM | 
| 5.3. | Embedded device case studies | 
| 5.3.1. | Nvidia: Jetson AGX Orin | 
| 5.3.2. | NXP Semiconductors: Introduction | 
| 5.3.3. | NXP Semiconductors: MCX N | 
| 5.3.4. | NXP Semiconductors: i.MX 95 and NPU | 
| 5.3.5. | Intel: AI hardware portfolio | 
| 5.3.6. | Intel: Core | 
| 5.3.7. | Perceive | 
| 5.3.8. | Perceive: Ergo 2 architecture | 
| 5.3.9. | GreenWaves Technologies | 
| 5.3.10. | GreenWaves Technologies: GAP9 architecture | 
| 5.3.11. | AMD Xilinx: ACAP | 
| 5.3.12. | AMD: Versal AI | 
| 5.3.13. | NationalChip: GX series | 
| 5.3.14. | NationalChip: GX8002 and gxNPU | 
| 5.3.15. | Efinix: Quantum architecture | 
| 5.3.16. | Efinix: Titanium and Trion FPGAs | 
| 6. | APPENDICES | 
| 6.1. | List of smartphones surveyed | 
| 6.1.1. | Appendix: List of smartphones surveyed - Apple and Asus | 
| 6.1.2. | Appendix: List of smartphones surveyed - Google and Honor | 
| 6.1.3. | Appendix: List of smartphones surveyed - Huawei, HTC and Motorola | 
| 6.1.4. | Appendix: List of smartphones surveyed - Nokia, OnePlus, Oppo | 
| 6.1.5. | Appendix: List of smartphones surveyed - realme | 
| 6.1.6. | Appendix: List of smartphones surveyed - Samsung and Sony | 
| 6.1.7. | Appendix: List of smartphones surveyed - Tecno Mobile | 
| 6.1.8. | Appendix: List of smartphones surveyed - Xiaomi | 
| 6.1.9. | Appendix: List of smartphones surveyed - Vivo and ZTE | 
| 6.2. | List of tablets surveyed | 
| 6.2.1. | Appendix: List of tablets surveyed - Acer, Amazon and Apple | 
| 6.2.2. | Appendix: List of tablets surveyed - Barnes & Noble, Google, Huawei, Lenovo | 
| 6.2.3. | Appendix: List of tablets surveyed - Microsoft, OnePlus, Samsung, Xiaomi |