| 1. | EXECUTIVE SUMMARY | 
| 1.1. | VR, AR, MR and XR as experiences | 
| 1.2. | Segmenting devices: VR vs. AR | 
| 1.3. | Display and optics systems in VR and AR | 
| 1.4. | Classifying headsets | 
| 1.5. | The metaverse as a driver for XR development | 
| 1.6. | XR devices and the metaverse | 
| 1.7. | Apple's Vision Pro and re-evaluation of XR | 
| 1.8. | The rise of passthrough MR in VR headsets | 
| 1.9. | The outlook for XR: comparing the VR and AR markets | 
| 1.10. | Display panel technologies in VR | 
| 1.11. | Display panel technologies in AR | 
| 1.12. | Benchmarking criteria (I): commercial factors | 
| 1.13. | Benchmarking criteria (II): technological factors | 
| 1.14. | Liquid crystal displays (LCDs): overview | 
| 1.15. | Major VR LCD ecosystem players | 
| 1.16. | Outlook for LCDs | 
| 1.17. | OLED (organic light emitting diode) displays: overview | 
| 1.18. | OLED-on-silicon/micro-OLED displays: overview | 
| 1.19. | OLEDoS vs. OLED on TFT | 
| 1.20. | OLED for VR: what might the new ecosystem look like? | 
| 1.21. | The OLEDoS ecosystem: Sony holds a powerful position | 
| 1.22. | Outlook for OLED(-on-TFT) displays | 
| 1.23. | Outlook for OLEDoS displays | 
| 1.24. | Micro-light emitting diode (micro-LED) displays: overview | 
| 1.25. | Possible supply chain for micro-LED displays | 
| 1.26. | Summary: micro-LED displays | 
| 1.27. | Liquid crystal on silicon (LCoS) displays: overview | 
| 1.28. | Digital micromirror device (DMD)/digital light processing (DLP) displays: overview | 
| 1.29. | Supply chains in LCoS for AR | 
| 1.30. | The DLP/DMD ecosystem in AR | 
| 1.31. | DLP vs. LCoS: why has DLP lost ground? | 
| 1.32. | Outlook for LCoS displays | 
| 1.33. | Outlook for DLP displays | 
| 1.34. | Laser beam scanning (LBS): overview | 
| 1.35. | The LBS ecosystem | 
| 1.36. | Outlook for LBS displays | 
| 1.37. | Unweighted comparison of all display types | 
| 1.38. | VR displays: benchmark performance | 
| 1.39. | Summary: Displays for VR | 
| 1.40. | Narrow FoV AR displays: benchmark performance (plots) | 
| 1.41. | Wide FoV AR displays: benchmark performance (plots) | 
| 1.42. | Summary: displays for AR | 
| 1.43. | Forecasts in this report | 
| 1.44. | VR headsets: revenue | 
| 1.45. | VR headsets: headset volume | 
| 1.46. | VR displays: adoption proportions | 
| 1.47. | VR displays: volume/no. displays | 
| 1.48. | VR displays: revenue | 
| 1.49. | AR headsets: revenue | 
| 1.50. | AR headsets: headset volume | 
| 1.51. | Narrow FoV AR displays: adoption proportions | 
| 1.52. | Narrow FoV AR displays: volume/no. displays | 
| 1.53. | Narrow FoV AR displays: revenue | 
| 1.54. | Wide FoV AR displays: adoption proportions | 
| 1.55. | Wide FoV AR displays: volume/no. displays | 
| 1.56. | Wide FoV AR displays: revenue | 
| 1.57. | Displays for VR: analyst outlook (I) | 
| 1.58. | Displays for VR: analyst outlook (II) | 
| 1.59. | Displays for AR: analyst outlook (I) | 
| 1.60. | Displays for AR: analyst outlook (II) | 
| 2. | INTRODUCTION | 
| 2.1. | Introduction to extended reality (XR) | 
| 2.1.1. | VR, AR, MR and XR as experiences | 
| 2.1.2. | Segmenting devices: VR vs. AR | 
| 2.1.3. | Classifying headsets | 
| 2.1.4. | AR, MR, VR and XR: a brief history | 
| 2.1.5. | The 2010s to date - the age of XR begins | 
| 2.1.6. | Applications in VR, AR & MR | 
| 2.1.7. | The metaverse as a driver for XR development | 
| 2.1.8. | XR devices and the metaverse | 
| 2.1.9. | Industry 4.0 and XR | 
| 2.1.10. | VR/AR solutions for Industry 4.0 | 
| 2.1.11. | Apple's Vision Pro and re-evaluation of XR | 
| 2.1.12. | The rise of passthrough MR in VR headsets | 
| 2.1.13. | Old terminology: PC-, standalone and smartphone XR | 
| 2.1.14. | Updating terminology: standalone vs. tethered | 
| 2.1.15. | AR: Defining terminology (I) | 
| 2.1.16. | AR: Defining terminology (II) | 
| 2.1.17. | Consumer AR headsets: a rocky history | 
| 2.1.18. | Consumer AR devices face tough competition | 
| 2.1.19. | AR headsets as a replacement for other smart devices | 
| 2.1.20. | AR as the end goal | 
| 2.1.21. | AR, MR and VR - market development | 
| 2.1.22. | VR headsets: selected players | 
| 2.1.23. | AR headsets: selected players | 
| 2.1.24. | Potential Big Tech entries to the AR market (I) | 
| 2.1.25. | Potential Big Tech entries to the AR market (II) | 
| 2.1.26. | The outlook for XR: comparing the VR and AR markets | 
| 2.2. | Introduction to VR displays | 
| 2.2.1. | VR display and optics requirements | 
| 2.2.2. | Display panel technologies in VR | 
| 2.2.3. | Comparing VR display types | 
| 2.2.4. | Choices of VR optic | 
| 2.2.5. | "Reverse passthrough": a new display type for VR | 
| 2.2.6. | Benchmarking performance of VR displays | 
| 2.2.7. | Major display suppliers | 
| 2.2.8. | Summary: displays for VR | 
| 2.3. | Introduction to AR displays | 
| 2.3.1. | AR optics and display requirements | 
| 2.3.2. | Display panel technologies in AR | 
| 2.3.3. | Optical combiners: definition and classification | 
| 2.3.4. | Optical combiners for AR | 
| 2.3.5. | Common waveguide architectures | 
| 2.3.6. | Common waveguide architectures:  operating principle and device examples | 
| 2.3.7. | Reflective (geometric) waveguides | 
| 2.3.8. | Reflective waveguides: SWOT analysis | 
| 2.3.9. | Surface relief grating waveguides | 
| 2.3.10. | Diffractive waveguides (SRG): SWOT analysis | 
| 2.3.11. | Volume holographic grating waveguides | 
| 2.3.12. | Diffractive waveguides (VHG): SWOT analysis | 
| 2.3.13. | Birdbath optics: current top choice for lower-end AR | 
| 2.3.14. | Birdbath combiners: SWOT analysis | 
| 2.3.15. | Status and market potential of optical combiners | 
| 2.3.16. | Optical engines: combining displays and optics in XR | 
| 2.3.17. | Narrow FoV AR displays: benchmark performance | 
| 2.3.18. | Wide FoV AR displays: benchmark performance (discussion) | 
| 2.3.19. | Conclusion: the future of AR displays | 
| 2.4. | Fundamental display metrics | 
| 2.4.1. | Purpose of this section | 
| 2.4.2. | Field of view defines XR experiences | 
| 2.4.3. | Eyebox and eye relief: keys to XR usability | 
| 2.4.4. | No free lunches: etendue, FoV and eyebox | 
| 2.4.5. | Measuring brightness and efficiency | 
| 2.4.6. | Resolution, FoV and pixel density | 
| 2.4.7. | Foveated rendering and displays: higher display quality at reduced resolution for both VR and AR | 
| 2.4.8. | Color gamuts: how colorful is my image? | 
| 2.4.9. | Contrast and dynamic range: the same but different | 
| 2.4.10. | The screen door effect, Mura effect and aliasing - ugly display artefacts | 
| 2.4.11. | How do display requirements differ between AR and VR? | 
| 3. | MARKET FORECASTS | 
| 3.1.1. | Forecasts in this report | 
| 3.2. | Forecasting methodology | 
| 3.2.1. | VR headset forecasting: important data sources | 
| 3.2.2. | AR headset forecasting: important data sources | 
| 3.2.3. | Methodology - device and display forecasts | 
| 3.2.4. | AR and VR headsets: state of the market | 
| 3.3. | Forecasts: VR headsets and displays | 
| 3.3.1. | VR: historic device sales | 
| 3.3.2. | Cyclic nature of VR hardware sales | 
| 3.3.3. | VR headsets: revenue | 
| 3.3.4. | VR headsets: headset volume | 
| 3.3.5. | VR displays: adoption proportions | 
| 3.3.6. | VR displays: volume/no. displays | 
| 3.3.7. | VR displays: revenue | 
| 3.3.8. | Conclusion: the future of VR displays | 
| 3.4. | Forecasts: AR headsets and displays | 
| 3.4.1. | AR: historic device sales | 
| 3.4.2. | What is not considered in forecasting | 
| 3.4.3. | AR headsets: revenue | 
| 3.4.4. | AR headsets: headset volume | 
| 3.4.5. | Narrow FoV AR displays: adoption proportions | 
| 3.4.6. | Narrow FoV AR displays: volume/no. displays | 
| 3.4.7. | Narrow FoV AR displays: revenue | 
| 3.4.8. | Wide FoV AR displays: adoption proportions | 
| 3.4.9. | Wide FoV AR displays: volume/no. displays | 
| 3.4.10. | Wide FoV AR displays: revenue | 
| 3.4.11. | Conclusion: the future of AR displays | 
| 4. | DISPLAY PANEL TECHNOLOGIES | 
| 4.1. | Liquid crystal displays (LCDs) | 
| 4.1.1. | Liquid crystal displays (LCDs): overview | 
| 4.1.2. | LCDs in VR: example device | 
| 4.1.3. | LCD in AR: example devices | 
| 4.1.4. | LCDs: introduction | 
| 4.1.5. | Illuminating LCD panels | 
| 4.1.6. | Global backlighting vs. mini-LED backlighting (local dimming) | 
| 4.1.7. | How are mini-LED backlights assembled? | 
| 4.1.8. | Laser backlighting in LCDs | 
| 4.1.9. | Field sequential color in LCDs: resolution expansion via the backlight | 
| 4.1.10. | JDI case study (I): reducing motion blur and ghosting in LCDs by strobing the backlight | 
| 4.1.11. | JDI case study (II): decreasing the response time of LCDs | 
| 4.1.12. | Major VR LCD ecosystem players | 
| 4.1.13. | What's next for LCDs in VR? | 
| 4.1.14. | Summary: LCDs | 
| 4.2. | OLED (organic light emitting diode) displays | 
| 4.2.1. | OLED (organic light emitting diode) displays: overview | 
| 4.2.2. | OLED displays in VR: example devices | 
| 4.2.3. | OLED displays: introduction | 
| 4.2.4. | OLED vs LCD: direct emission vs transmission | 
| 4.2.5. | How do OLEDs work? | 
| 4.2.6. | Motivations for OLED material development advancement | 
| 4.2.7. | Room at the top: strategies to widen display color gamuts | 
| 4.2.8. | Readiness level of OLED emissive materials | 
| 4.2.9. | RGB vs white OLED | 
| 4.2.10. | Why did OLED use decline in VR? | 
| 4.2.11. | Why does the PS VR2 use OLED displays? | 
| 4.2.12. | What limits OLED pixel density? | 
| 4.2.13. | Case study: increasing OLED pixel density via photolithography | 
| 4.2.14. | Why has photolithographic patterning of OLEDs been a difficult problem to solve? | 
| 4.2.15. | Case study: JDI's eLEAP process | 
| 4.2.16. | Flexible/curved OLED displays in VR | 
| 4.2.17. | OLED for VR: what might the new ecosystem look like? | 
| 4.2.18. | Summary: OLED displays | 
| 4.3. | OLED-on-silicon/micro-OLED displays | 
| 4.3.1. | OLED-on-silicon/micro-OLED displays: overview | 
| 4.3.2. | OLEDoS displays in AR: example devices | 
| 4.3.3. | OLEDoS displays in VR: example devices | 
| 4.3.4. | OLEDoS displays: introduction | 
| 4.3.5. | OLEDoS vs. OLED on TFT | 
| 4.3.6. | OLEDoS displays are well-proven for near-eye display use | 
| 4.3.7. | Why is W-OLED dominant in OLEDoS displays? | 
| 4.3.8. | Case study: eMagin, Samsung Display and OLEDoS patterning | 
| 4.3.9. | Case study: OLEDoS as an enabler for low-profile AR (I) | 
| 4.3.10. | Case study: OLEDoS as an enabler for low-profile AR (II) | 
| 4.3.11. | OLEDoS with birdbath combiners: a popular choice for AR | 
| 4.3.12. | Microdisplays in VR: does eyebox pose a problem? | 
| 4.3.13. | The OLEDoS ecosystem: Sony holds a powerful position | 
| 4.3.14. | Summary: OLEDoS displays | 
| 4.4. | Micro-light emitting diode (micro-LED) displays | 
| 4.4.1. | Micro-light emitting diode (micro-LED) displays: overview | 
| 4.4.2. | Micro-LED displays in AR: example devices | 
| 4.4.3. | Micro-LED displays: introduction | 
| 4.4.4. | Manufacturing methods | 
| 4.4.5. | Mass transfer methods for micro-LED | 
| 4.4.6. | Mass transfer and assembly technologies | 
| 4.4.7. | Manufacturing methods for XR displays | 
| 4.4.8. | Color assembly choices | 
| 4.4.9. | Case study: Jade Bird Display and the commercial launch of micro-LED in AR | 
| 4.4.10. | Optical lens synthesis/RGB die-by-die color assembly in AR: a stopgap solution? | 
| 4.4.11. | Common color assembly choice comparison | 
| 4.4.12. | Basic requirements of QDs for micro-LED displays | 
| 4.4.13. | Material choices for micro-LED chips | 
| 4.4.14. | Possible supply chain for micro-LED displays | 
| 4.4.15. | Case study: Plessey, Meta and Big Tech interest in micro-LED microdisplays | 
| 4.4.16. | Case study: AR contact lenses powered by microLEDs | 
| 4.4.17. | Summary: micro-LED displays | 
| 4.5. | Liquid crystal on silicon (LCoS) displays | 
| 4.5.1. | Liquid crystal on silicon (LCoS) displays: overview | 
| 4.5.2. | LCoS displays in AR: example devices | 
| 4.5.3. | LCoS displays: introduction | 
| 4.5.4. | LCoS micro-display architecture | 
| 4.5.5. | How LCoS displays operate | 
| 4.5.6. | Liquid crystal material choice affects how panels perform | 
| 4.5.7. | LCoS performance requirements | 
| 4.5.8. | Working principle of simple LCoS-based AR headsets | 
| 4.5.9. | Case study: Google Glass EE LCoS illumination setup | 
| 4.5.10. | Illuminating LCoS chips and combining color | 
| 4.5.11. | AKONIA: indicating possible approaches to AR for Apple | 
| 4.5.12. | Case study: the Magic Leap 2 and the unique advantages of LCoS | 
| 4.5.13. | Case study: the Magic Leap 1's attempts to solve the vergence-accommodation conflict | 
| 4.5.14. | Manufacturing LCoS chips | 
| 4.5.15. | Supply chains in LCoS for AR | 
| 4.5.16. | Representative LCoS modulator providers and their unique products | 
| 4.5.17. | Case study: OmniVision | 
| 4.5.18. | Case study: Meadowlark Optics Inc. | 
| 4.5.19. | Case study: Himax Technologies Inc. | 
| 4.5.20. | Case study: Himax's front-lit LCoS | 
| 4.5.21. | Summary: LCoS displays | 
| 4.6. | Digital micromirror device (DMD)/digital light processing (DLP) displays | 
| 4.6.1. | Digital micromirror device (DMD)/digital light processing (DLP) displays: overview | 
| 4.6.2. | DLP displays in AR: example devices | 
| 4.6.3. | DLP displays: introduction | 
| 4.6.4. | Technology choices for DLP displays | 
| 4.6.5. | Basic principles of DMD operation | 
| 4.6.6. | DMD mirrors and wobulation: old vs. new | 
| 4.6.7. | Illuminating DLP displays | 
| 4.6.8. | Combining LED colors for DLP | 
| 4.6.9. | Texas Instruments' Pico DMDs | 
| 4.6.10. | The DLP supply chain | 
| 4.6.11. | Case study: Snap, WaveOptics and DLP | 
| 4.6.12. | The DLP/DMD ecosystem in AR | 
| 4.6.13. | Comparing benchmarks: DLP vs. LCoS | 
| 4.6.14. | DLP vs. LCoS: why has DLP lost ground? | 
| 4.6.15. | Summary: DLP displays | 
| 4.7. | Laser beam scanning (LBS) displays | 
| 4.7.1. | Laser beam scanning (LBS): overview | 
| 4.7.2. | LBS displays in AR: example devices | 
| 4.7.3. | LBS displays: introduction | 
| 4.7.4. | LBS development: where do firms differentiate? | 
| 4.7.5. | The LBS ecosystem | 
| 4.7.6. | Technology choices for LBS displays | 
| 4.7.7. | LBS, holographic reflectors and retinal projection | 
| 4.7.8. | Combining RGB lasers for color displays | 
| 4.7.9. | Case study: software to ease alignment tolerances in LBS displays and AR devices | 
| 4.7.10. | Scanning patterns and resonance: a tough tradeoff | 
| 4.7.11. | MEMS mirrors: the heart of LBS devices | 
| 4.7.12. | LBS has synergies with LiDAR technology | 
| 4.7.13. | Case study: developing LBS systems alongside LiDAR | 
| 4.7.14. | Supply chain crossover in LBS and LiDAR | 
| 4.7.15. | Summary: LBS displays | 
| 4.8. | Display backplanes and driving technologies | 
| 4.8.1. | Overview: backplanes and driving technologies | 
| 4.8.2. | Backplane technology choices: TFT materials | 
| 4.8.3. | Low temperature polycrystalline oxide (LTPO): hybridized TFT materials for variable refresh rates | 
| 4.8.4. | CMOS backplanes for displays | 
| 4.8.5. | Display size and economics depend on backplane materials | 
| 4.8.6. | Passive matrix addressing | 
| 4.8.7. | Active matrix addressing: the ubiquitous addressing method | 
| 4.8.8. | Pixel driving circuits for active matrix LCD and OLED | 
| 4.8.9. | Pixel driving for micro-LEDs | 
| 4.8.10. | Comparison between PM and AM addressing | 
| 4.8.11. | Pulse amplitude modulation (PAM) and pulse width modulation (PWM) driving | 
| 4.8.12. | Summary: backplanes and driving | 
| 5. | "TRUE 3D" DISPLAYS | 
| 5.1. | Overview: "true 3D" displays | 
| 5.2. | The vergence-accommodation conflict | 
| 5.3. | Solutions to the vergence-accommodation conflict for XR | 
| 5.4. | Light field displays: reconstructing scenes from multiple viewpoints | 
| 5.5. | Avoiding the resolution limit: sequential light field displays | 
| 5.6. | Case study: CREAL's light field near-eye displays | 
| 5.7. | Light field displays with laser beam scanning | 
| 5.8. | Holography: reconstructing wavefronts | 
| 5.9. | Computer-generated holography: digital hologram generation | 
| 5.10. | VividQ: holographic displays for AR | 
| 5.11. | SWOT: "true 3D" displays | 
| 5.12. | Geometric phase lenses with eye tracking: the best alternative to "true 3D" displays? | 
| 5.13. | What is geometric (Pancharatnam-Berry) phase? | 
| 5.14. | Why geometric phase lenses matter | 
| 5.15. | Liquid crystals and switchable waveplates | 
| 5.16. | Liquid crystals in GPLs | 
| 5.17. | Geometric phase lenses: SWOT | 
| 5.18. | Summary: "true 3D" displays | 
| 6. | COMPARATIVE BENCHMARKING OF DISPLAY TYPES | 
| 6.1.1. | Introduction to display benchmarking | 
| 6.2. | Benchmarking display types | 
| 6.2.1. | Benchmarking criteria (I): commercial factors | 
| 6.2.2. | Benchmarking criteria (II): technological factors | 
| 6.2.3. | Benchmark performance: LCDs | 
| 6.2.4. | Benchmark performance: OLED-on-TFT | 
| 6.2.5. | Benchmark performance: OLED-on-Si | 
| 6.2.6. | Benchmark performance: Micro-LED | 
| 6.2.7. | Benchmark performance: LCoS | 
| 6.2.8. | Benchmark performance: DLP | 
| 6.2.9. | Benchmark performance: LBS | 
| 6.2.10. | Unweighted comparison of all display types | 
| 6.3. | Comparing application suitability | 
| 6.3.1. | Comparing benchmarks: VR and AR displays | 
| 6.3.2. | Commercial factor weightings: the same for all device types | 
| 6.3.3. | Technological factor weightings: VR | 
| 6.3.4. | VR displays: benchmark performance (plots) | 
| 6.3.5. | VR displays: benchmark performance (discussion) | 
| 6.3.6. | Technological factor weightings: Narrow FoV AR | 
| 6.3.7. | Narrow FoV AR displays: benchmark performance (plots) | 
| 6.3.8. | Narrow FoV AR displays: benchmark performance (discussion) | 
| 6.3.9. | Technological factor weightings: Wide FoV AR | 
| 6.3.10. | Wide FoV AR displays: benchmark performance (plots) | 
| 6.3.11. | Wide FoV AR displays: benchmark performance (discussion) | 
| 6.3.12. | Summary: display technology benchmarking | 
| 7. | COMPANY PROFILES | 
| 7.1. | DigiLens | 
| 7.2. | Dispelix | 
| 7.3. | HTC's Vive XR Elite: New Design Approaches in Virtual Reality | 
| 7.4. | IQE | 
| 7.5. | Jade Bird Display | 
| 7.6. | Jade Bird Display | 
| 7.7. | Lenovo: The ThinkReality A3 | 
| 7.8. | LetinAR | 
| 7.9. | Lumus | 
| 7.10. | Lynx | 
| 7.11. | Lynx — Q2 2022 Update | 
| 7.12. | MICLEDI | 
| 7.13. | MICROOLED | 
| 7.14. | Mojo Vision | 
| 7.15. | Oorym | 
| 7.16. | Optinvent | 
| 7.17. | OQmented | 
| 7.18. | Ostendo Technologies | 
| 7.19. | RayNeo (TCL) | 
| 7.20. | Sony (CES 2023) | 
| 7.21. | The Metaverse Standards Forum | 
| 7.22. | TriLite Technologies | 
| 7.23. | TruLife Optics | 
| 7.24. | VitreaLab | 
| 7.25. | VividQ | 
| 7.26. | VividQ and Dispelix: Pairing Holographic Displays with Waveguides | 
| 7.27. | VividQ: Visit and Tech Demo |