| 1. | EXECUTIVE SUMMARY | 
| 1.1. | What's New in This Report? | 
| 1.2. | Materials Considered in this Report | 
| 1.3. | EV Battery Demand Market Share Forecast (GWh) | 
| 1.4. | Cathode Chemistry: Nickel Up, Cobalt Down, and LFP Resurgence | 
| 1.5. | Cathode Market Share for Li-ion in EVs (2015-2033) | 
| 1.6. | Li-ion Timeline - Technology and Performance | 
| 1.7. | Cathode Material Intensities (kg/kWh) | 
| 1.8. | How Does Material Intensity Change? | 
| 1.9. | The Promise of Silicon | 
| 1.10. | Anode Material Demand Forecast for EVs 2021-2033 (kg) | 
| 1.11. | Battery Cell Material Demand Forecast for EVs 2021-2033 (kg) | 
| 1.12. | Battery Cell Material Market Value Forecast for EVs 2021-2033 (US$) | 
| 1.13. | Cell Format Market Share | 
| 1.14. | Gravimetric Energy Density and Cell-to-pack Ratio | 
| 1.15. | Cell vs Pack Energy Density | 
| 1.16. | Component Breakdown of a Battery Pack | 
| 1.17. | Thermal Interface Material Trends | 
| 1.18. | Battery Thermal Management Strategy Market Share | 
| 1.19. | Energy Density Improvements with Composites | 
| 1.20. | Insulation Materials Comparison | 
| 1.21. | Electrical Interconnects: Aluminum, Copper, and Insulation Forecast 2021-2033 (kg) | 
| 1.22. | Fire Protection Material Market Shares | 
| 1.23. | Battery Pack Materials Forecast 2021-2033 (kg) | 
| 1.24. | Battery Pack Material Market Value Forecast for EVs 2021-2033 (US$) | 
| 1.25. | Total Battery Cell and Pack Materials Forecast by Material 2021-2033 (kg) | 
| 1.26. | Total Battery Cell and Pack Materials Market Value Forecast 2021-2033 (US$) | 
| 2. | INTRODUCTION | 
| 2.1. | Electric Vehicle Definitions | 
| 2.2. | Drivetrain Specifications | 
| 2.3. | Battery Materials for Electric Vehicles | 
| 2.4. | Materials Considered in this Report | 
| 3. | LI-ION BATTERY CHEMISTRY | 
| 3.1. | What is a Li-ion Battery? | 
| 3.2. | Lithium Battery Chemistries | 
| 3.3. | Why Lithium? | 
| 3.4. | Li-ion Cathode Benchmark | 
| 3.5. | Li-ion Anode Benchmark | 
| 3.6. | Cathode Chemistry: Nickel Up, Cobalt Down, and LFP Resurgence | 
| 4. | CELL COSTS AND ENERGY DENSITY | 
| 4.1. | Chemistry Energy Density Comparison | 
| 4.2. | Li-ion Timeline - Technology and Performance | 
| 4.3. | Impact of Material Price Volatility | 
| 4.4. | Impact of Material Price | 
| 4.5. | BEV Battery Cell and Pack Price Forecast 2020-2033 ($/kWh) | 
| 4.6. | Li-ion Batteries: Technologies, Markets and End of Life | 
| 5. | MATERIALS FOR LI-ION BATTERY CELLS | 
| 5.1. | Introduction | 
| 5.1.1. | Impact of Material Price Volatility | 
| 5.1.2. | Raw Material Uncertainty | 
| 5.1.3. | Drivers and Restraints for Battery Recycling | 
| 5.1.4. | How Does Material Intensity Change? | 
| 5.1.5. | Inactive Material Intensities (exc. casings) | 
| 5.2. | Raw Materials | 
| 5.2.1. | The Elements Used in Li-ion Batteries | 
| 5.2.2. | The Li-ion Supply Chain | 
| 5.2.3. | Raw Materials Critical to Li-ion | 
| 5.2.4. | Raw Material Supply a Driver for Alternative Chemistries? | 
| 5.2.5. | Li-ion Raw Material Geographical Distribution | 
| 5.3. | Cathode Materials | 
| 5.3.1. | Cathode Development | 
| 5.3.2. | Cathode Material Intensities (kg/kWh) | 
| 5.3.3. | Cathode Market Share for Li-ion in EVs (2015-2033) | 
| 5.3.4. | Cathode Material Demand Forecast 2021-2033 (kg) | 
| 5.3.5. | Price Assumptions | 
| 5.3.6. | Critical Cathode Material Value Forecast 2021-2033 (US$) | 
| 5.3.7. | Lithium | 
| 5.3.8. | Cobalt | 
| 5.3.9. | Nickel | 
| 5.4. | Anode Materials | 
| 5.4.1. | Anode Materials | 
| 5.4.2. | Anode Material Demand Forecast for EVs 2021-2033 (kg) | 
| 5.4.3. | Anode Material Prices | 
| 5.4.4. | Anode Material Market Value Forecast for EVs 2021-2033 (US$) | 
| 5.4.5. | Graphite | 
| 5.4.6. | Silicon | 
| 5.5. | Electrolytes, Separators, Binders, and Conductive Additives | 
| 5.5.1. | What is in a Cell? | 
| 5.5.2. | Introduction to Li-ion Electrolytes | 
| 5.5.3. | Electrolyte Technology Overview | 
| 5.5.4. | Introduction to Separators | 
| 5.5.5. | Polyolefin Separators | 
| 5.5.6. | Introduction to Binders | 
| 5.5.7. | Binders - Aqueous vs Non-aqueous | 
| 5.5.8. | Conductive Agents | 
| 5.5.9. | Specialty Carbon Black Analysis | 
| 5.5.10. | Carbon Nanotubes in Li-ion Batteries | 
| 5.5.11. | Why Use Nanocarbons? | 
| 5.5.12. | Key Carbon Nanotube Relationships | 
| 5.5.13. | Market Expansion of MWCNTs | 
| 5.5.14. | Carbon Nanotubes | 
| 5.5.15. | Overview of Graphene's Potential in Energy Storage | 
| 5.5.16. | Main Graphene Players - Energy Storage | 
| 5.5.17. | Current Collectors in a Li-ion Battery Cell | 
| 5.5.18. | Current Collector Materials | 
| 5.6. | Total Battery Cell Materials Forecast | 
| 5.6.1. | Battery Cell Material Demand Forecast for EVs 2021-2033 (kg) | 
| 5.6.2. | Battery Cell Material Market Value Forecast for EVs 2021-2033 (US$) | 
| 6. | CELL AND PACK DESIGN | 
| 6.1. | Introduction | 
| 6.1.1. | Cell Types | 
| 6.1.2. | Cell Format Market Share | 
| 6.1.3. | Cell Format Comparison | 
| 6.1.4. | Li-ion Batteries: from Cell to Pack | 
| 6.1.5. | Pack Design | 
| 6.2. | Cell-to-pack, cell-to-chassis and Large Cell Formats: Designs and Announcements | 
| 6.2.1. | What is Cell-to-pack? | 
| 6.2.2. | Drivers and Challenges for Cell-to-pack | 
| 6.2.3. | What is Cell-to-chassis/body? | 
| 6.2.4. | Servicing/ Repair and Recyclability | 
| 6.2.5. | BYD Blade Cell-to-pack | 
| 6.2.6. | BYD Cell-to-body | 
| 6.2.7. | CATL Cell-to-pack and Cell-to-chassis | 
| 6.2.8. | GM Ultium | 
| 6.2.9. | Leapmotor Cell-to-chassis | 
| 6.2.10. | LG Removing the Module | 
| 6.2.11. | Nio Hybrid Chemistry Cell-to-pack | 
| 6.2.12. | Our Next Energy: Aeris | 
| 6.2.13. | Stellantis Cell-to-pack | 
| 6.2.14. | SVOLT - Dragon Armor Battery | 
| 6.2.15. | Tesla Cell-to-body | 
| 6.2.16. | VW Cell-to-pack | 
| 6.2.17. | Cell-to-pack and Cell-to-body Designs Summary | 
| 6.2.18. | Gravimetric Energy Density and Cell-to-pack Ratio | 
| 6.2.19. | Volumetric Energy Density and Cell-to-pack Ratio | 
| 6.2.20. | Outlook for Cell-to-pack & Cell-to-body Designs | 
| 6.3. | Energy Density and Material Utilization | 
| 6.3.1. | Passenger Cars: Pack Energy Density (291 models) | 
| 6.3.2. | Passenger Cars: Pack Energy Density Trends | 
| 6.3.3. | Passenger Cars: Cell Energy Density Trends | 
| 6.3.4. | Cell vs Pack Energy Density | 
| 6.3.5. | Cell and Pack Energy Density Forecast 2020-2033 (Wh/kg) | 
| 6.3.6. | Component Breakdown of a Battery Pack | 
| 6.3.7. | Reduction of Pack Materials (kg/kWh) | 
| 7. | PACK COMPONENTS | 
| 7.1. | Thermal Interface Materials for EV Battery Packs | 
| 7.1.1. | Introduction to Thermal Interface Materials for EVs | 
| 7.1.2. | TIM Pack and Module Overview | 
| 7.1.3. | TIM Application - Pack and Modules | 
| 7.1.4. | TIM Application by Cell Format | 
| 7.1.5. | Key Properties for TIMs in EVs | 
| 7.1.6. | Gap Pads in EV Batteries | 
| 7.1.7. | Switching to Gap Fillers from Pads | 
| 7.1.8. | Thermally Conductive Adhesives in EV Batteries | 
| 7.1.9. | Material Options and Market Comparison | 
| 7.1.10. | TIM Chemistry Comparison | 
| 7.1.11. | The Silicone Dilemma for the Automotive Market | 
| 7.1.12. | Gap Filler to Thermally Conductive Adhesives | 
| 7.1.13. | Thermal Conductivity Shift | 
| 7.1.14. | TCA Requirements | 
| 7.1.15. | TIM Demand per Vehicle | 
| 7.1.16. | TIM Forecast for EV Batteries (kg) | 
| 7.1.17. | Other Applications for TIMs | 
| 7.2. | Cold Plates and Coolant Hoses | 
| 7.2.1. | Thermal System Architecture | 
| 7.2.2. | Coolant Fluids in EVs | 
| 7.2.3. | Introduction to EV Battery Thermal Management | 
| 7.2.4. | Battery Thermal Management Strategy by OEM | 
| 7.2.5. | Battery Thermal Management Strategy Market Share | 
| 7.2.6. | Thermal Management in Cell-to-pack Designs | 
| 7.2.7. | Inter-cell Heat Spreaders or Cooling Plates | 
| 7.2.8. | Advanced Cold Plate Design | 
| 7.2.9. | Examples of Cold Plate Design | 
| 7.2.10. | DuPont - Hybrid Composite/metal Cooling Plate | 
| 7.2.11. | L&L Products - Structural Adhesive to Enable a New Cold Plate Design | 
| 7.2.12. | Senior Flexonics - Battery Cold Plate Materials Choice | 
| 7.2.13. | Coolant Hoses for EVs | 
| 7.2.14. | Coolant Hose Material | 
| 7.2.15. | Alternate Hose Materials | 
| 7.2.16. | Thermal Management Component Mass Forecast 2021-2033 (kg) | 
| 7.3. | Battery Enclosures | 
| 7.3.1. | Battery Enclosure Materials and Competition | 
| 7.3.2. | From Steel to Aluminium | 
| 7.3.3. | Towards Composite Enclosures? | 
| 7.3.4. | Composite Enclosure EV Examples (1) | 
| 7.3.5. | Composite Enclosure EV Examples (2) | 
| 7.3.6. | Projects for Composite Enclosure Development (1) | 
| 7.3.7. | Projects for Composite Enclosure Development (2) | 
| 7.3.8. | Alternatives to Phenolic Resins | 
| 7.3.9. | Are Polymers Suitable Housings? | 
| 7.3.10. | Plastic Intensive Battery Pack from SABIC | 
| 7.3.11. | SMC vs RTM/LCM | 
| 7.3.12. | SMC for Battery Trays and Lids - LyondellBasell | 
| 7.3.13. | Advanced Composites for Battery Enclosures - INEOS Composites | 
| 7.3.14. | Polyamide 6-based Enclosure | 
| 7.3.15. | Continental Structural Plastics - Honeycomb Technology | 
| 7.3.16. | Composite Parts - TRB Lightweight Structures | 
| 7.3.17. | Composites with Fire Protection | 
| 7.3.18. | Other Composite Enclosure Material Suppliers (1) | 
| 7.3.19. | Other Composite Enclosure Material Suppliers (2) | 
| 7.3.20. | EMI Shielding for Composite Enclosures | 
| 7.3.21. | Challenges with Structural Batteries | 
| 7.3.22. | Adding Fire Protection to Composite Parts | 
| 7.3.23. | Metal Foams for Battery Enclosures? | 
| 7.3.24. | Battery Enclosure Materials Summary | 
| 7.3.25. | Energy Density Improvements with Composites | 
| 7.3.26. | Cost Effectiveness of Composite Enclosures | 
| 7.3.27. | Battery Enclosure Material Forecasts 2021-2033 (kg) | 
| 7.4. | Fire Protection Materials | 
| 7.4.1. | Thermal Runaway and Fires in EVs | 
| 7.4.2. | Battery Fires and Related Recalls (automotive) | 
| 7.4.3. | Automotive Fire Incidents: OEMs and Causes | 
| 7.4.4. | EV Fires Compared to ICEs | 
| 7.4.5. | Severity of EV Fires | 
| 7.4.6. | EV Fires: When Do They Happen? | 
| 7.4.7. | Regulations | 
| 7.4.8. | What are Fire Protection Materials? | 
| 7.4.9. | Thermally Conductive or Thermally Insulating? | 
| 7.4.10. | Fire Protection Materials: Main Categories | 
| 7.4.11. | Material comparison | 
| 7.4.12. | Density vs Thermal Conductivity - Thermally Insulating | 
| 7.4.13. | Material Market Shares | 
| 7.4.14. | Fire Protection Materials Forecast 2019-2033 (kg) | 
| 7.4.15. | Fire Protection Materials | 
| 7.5. | Compression Pads/Foams | 
| 7.5.1. | Compression Pads/foams | 
| 7.5.2. | Polyurethane Compression Pads | 
| 7.5.3. | Rogers Compression Pads | 
| 7.5.4. | Compression and Fire Protection (1) | 
| 7.5.5. | Compression and Fire Protection (2) | 
| 7.5.6. | Saint-Gobain | 
| 7.5.7. | Players in Compression Pads/foams | 
| 7.5.8. | Example use in EVs: Ford Mustang Mach-E | 
| 7.5.9. | Compression Pads/foams Forecast 2021-2033 (kg) | 
| 7.6. | Cell Electrical Insulation | 
| 7.6.1. | Inter-cell Electrical Isolation | 
| 7.6.2. | Films for Electrical Insulation | 
| 7.6.3. | Avery Dennison - Tapes for Batteries | 
| 7.6.4. | Dielectric Coatings | 
| 7.6.5. | Insulation Materials Comparison | 
| 7.6.6. | Insulating Cell-to-cell Foams | 
| 7.6.7. | Inter-cell Electric Isolation Forecast 2021-2033 (kg) | 
| 7.7. | Electrical Interconnects and Insulation | 
| 7.7.1. | Introduction to Battery Interconnects | 
| 7.7.2. | Aluminum vs Copper for Interconnects | 
| 7.7.3. | Busbar Insulation Materials | 
| 7.7.4. | Tesla Model S P85D | 
| 7.7.5. | Nissan Leaf 24kWh: Cell Connection | 
| 7.7.6. | Nissan Leaf 24kWh | 
| 7.7.7. | BMW i3 94Ah | 
| 7.7.8. | Hyundai E-GMP | 
| 7.7.9. | VW ID4 | 
| 7.7.10. | Tesla 4680 | 
| 7.7.11. | Material Quantity in Battery Interconnects: kg/kWh Summary | 
| 7.7.12. | Electrical Interconnects: Aluminum, Copper, and Insulation Forecast 2021-2033 (kg) | 
| 7.8. | Battery Pack Materials Forecasts | 
| 7.8.1. | Battery Pack Materials Forecast 2021-2033 (kg) | 
| 7.8.2. | Battery Pack Materials Price Assumptions | 
| 7.8.3. | Battery Pack Material Market Value Forecast for EVs 2021-2033 (US$) | 
| 8. | BATTERY MATERIAL/STRUCTURE EXAMPLES | 
| 8.1. | Examples: Automotive | 
| 8.1.1. | Audi e-tron | 
| 8.1.2. | Audi e-tron GT | 
| 8.1.3. | BMW i3 | 
| 8.1.4. | BYD Blade | 
| 8.1.5. | Chevrolet Bolt | 
| 8.1.6. | Faraday Future FF91 | 
| 8.1.7. | Ford Mustang Mach-E/Transit/F150 battery | 
| 8.1.8. | Hyundai Kona | 
| 8.1.9. | Hyundai E-GMP | 
| 8.1.10. | Jaguar I-PACE | 
| 8.1.11. | Mercedes EQS | 
| 8.1.12. | MG ZS EV | 
| 8.1.13. | MG Cell-to-pack | 
| 8.1.14. | Rimac Technology | 
| 8.1.15. | Rivian R1T | 
| 8.1.16. | Tesla Model 3/Y Cylindrical NCA | 
| 8.1.17. | Tesla Model 3/Y Prismatic LFP | 
| 8.1.18. | Tesla Model S P85D | 
| 8.1.19. | Tesla Model S Plaid | 
| 8.1.20. | Tesla 4680 Pack | 
| 8.1.21. | Toyota Prius PHEV | 
| 8.1.22. | Toyota RAV4 PHEV | 
| 8.1.23. | VW MEB Platform | 
| 8.2. | Examples: Heavy duty, Commercial Vehicles, and Other Vehicles | 
| 8.2.1. | Akasol (BorgWarner) | 
| 8.2.2. | Microvast & REE | 
| 8.2.3. | John Deere (Kreisel) | 
| 8.2.4. | Romeo Power | 
| 8.2.5. | Superbike Battery Holder | 
| 8.2.6. | Vertical Aerospace | 
| 8.2.7. | Voltabox | 
| 8.2.8. | Xerotech | 
| 8.2.9. | XING Mobility | 
| 9. | FORECASTS AND ASSUMPTIONS | 
| 9.1. | EV Materials Forecast: Methodology & Assumptions | 
| 9.2. | IDTechEx Model Database | 
| 9.3. | Average Battery Capacity Forecast: Car, 2W, 3W, Microcar, Bus, Van, and Truck | 
| 9.4. | EV Battery Demand Market Share Forecast (GWh) | 
| 9.5. | Cathode Material Demand Forecast 2021-2033 (kg) | 
| 9.6. | Price Assumptions | 
| 9.7. | Critical Cathode Material Value Forecast 2021-2033 (US$) | 
| 9.8. | Anode Material Demand Forecast for EVs 2021-2033 (kg) | 
| 9.9. | Anode Material Prices | 
| 9.10. | Anode Material Market Value Forecast for EVs 2021-2033 (US$) | 
| 9.11. | Battery Cell Material Demand Forecast for EVs 2021-2033 (kg) | 
| 9.12. | Battery Cell Material Market Value Forecast for EVs 2021-2033 (US$) | 
| 9.13. | Battery Pack Materials Forecast 2021-2033 (kg) | 
| 9.14. | Battery Pack Material Market Value Forecast for EVs 2021-2033 (US$) | 
| 9.15. | Total Battery Cell and Pack Materials Forecast by Material 2021-2033 (kg) | 
| 9.16. | Battery Pack Materials Price Assumptions | 
| 9.17. | Total Battery Cell and Pack Materials Forecast by Vehicle Type 2021-2033 (kg) | 
| 9.18. | Total Battery Cell and Pack Materials Market Value Forecast 2021-2033 (US$) |