| 1. | EXECUTIVE SUMMARY | 
| 1.1. | Introduction to Thermal Interface Materials (TIM) | 
| 1.2. | Properties of Thermal Interface Materials | 
| 1.3. | Thermal Conductivity Comparison of TIM Formats | 
| 1.4. | Comparisons of Price and Thermal Conductivity | 
| 1.5. | Differences between thermal pads and grease - (1) | 
| 1.6. | Differences between thermal pads and grease - (2) | 
| 1.7. | TIM by application - area forecast | 
| 1.8. | TIM by application - mass forecast | 
| 1.9. | TIM by application - market size/revenue forecast | 
| 1.10. | TIM Forecast for EV Batteries | 
| 1.11. | TIM Forecast for Data Centers | 
| 1.12. | TIM requirements for data center applications | 
| 1.13. | TIM Forecast for ADAS Sensors | 
| 1.14. | TIM requirements for ADAS components | 
| 1.15. | Trends in consumer electronics: TlM utilization | 
| 1.16. | TIM & Heat Spreader Forecast For Consumer Electronics | 
| 1.17. | Total TIM area forecast for 5G stations | 
| 1.18. | Company Profiles | 
| 2. | OVERVIEW | 
| 2.1. | Introduction | 
| 2.1.1. | Introduction to TIMs - (1) | 
| 2.1.2. | Introduction to TIMs - (2) | 
| 2.1.3. | Key Factors in System Level Performance | 
| 2.1.4. | Thermal Conductivity vs Thermal Resistance | 
| 2.2. | Comparison of Key Factors by TIM Form | 
| 2.2.1. | Properties of Thermal Interface Materials | 
| 2.2.2. | Comparisons of Price and Thermal Conductivity | 
| 2.2.3. | Thermal Conductivity by TIM Format | 
| 2.2.4. | Price Comparison of TIM Fillers and TIM Matrix | 
| 2.2.5. | 1. Gap Pads | 
| 2.2.6. | SWOT - Gap Pads | 
| 2.2.7. | 2. Thermal Gels/ Gap Fillers | 
| 2.2.8. | SWOT - Thermal Gels/Gap Fillers | 
| 2.2.9. | 3. Thermal Greases | 
| 2.2.10. | SWOT - Thermal Greases | 
| 2.2.11. | 4. Phase Change Materials (PCMs) | 
| 2.2.12. | SWOT - Phase Change Materials (PCMs) | 
| 2.2.13. | 5. Adhesive Tapes | 
| 2.2.14. | SWOT - Adhesive Tapes and TCA | 
| 2.2.15. | 6. Potting/Encapsulants | 
| 2.2.16. | SWOT - Potting/Encapsulants | 
| 2.3. | Advanced TIMs | 
| 2.3.1. | Summary of Advanced TIMs | 
| 2.3.2. | Introduction | 
| 2.3.3. | Metal Filled Polymer TIMs | 
| 2.3.4. | Boron Nitride Nanostructures | 
| 2.4. | TIM Dispensing Equipment | 
| 2.4.1. | Dispensing TIMs Introduction | 
| 2.4.2. | Challenges for Dispensing TIM | 
| 2.4.3. | Low-volume Dispensing Methods | 
| 2.4.4. | High-volume Dispensing Methods | 
| 2.4.5. | Compatibility of Meter, Mix, Dispense (MMD) System | 
| 2.4.6. | TIM Dispensing Equipment Suppliers | 
| 2.4.7. | Use cases - TIM PrintTM - Suzhou Hemi Electronics | 
| 2.5. | Historic Major TIM Acquisition | 
| 2.5.1. | Henkel Acquires Bergquist | 
| 2.5.2. | Parker Acquires Lord | 
| 2.5.3. | DuPont Acquires Laird | 
| 2.5.4. | Henkel Acquires Thermexit Business From Nanoramic | 
| 2.5.5. | DuPont Failed to Acquire Rogers | 
| 3. | TIMS IN EMI SHIELDING | 
| 3.1. | Overview | 
| 3.1.1. | Introduction to EMI shielding | 
| 3.1.2. | EMI use-cases | 
| 3.1.3. | Considerations of TIMs in EMI Shielding | 
| 3.1.4. | EMI Shielding - Dielectric Constant | 
| 3.2. | EMI and TIMs in ADAS | 
| 3.2.1. | Applications of TIMs in EMI Shielding for ADAS Radars | 
| 3.2.2. | Laird's - CoolShield and CoolShield-Flex Series | 
| 3.2.3. | Density and Thermal Conductivity of TIMs for Radar | 
| 3.2.4. | 3M — TIM and EMI for ECUs | 
| 3.3. | EMI and TIMs in 5G | 
| 3.3.1. | EMI is More Challenging in 5G | 
| 3.3.2. | EMI Shielding - Next Growth Driver for TIMs | 
| 3.3.3. | Antenna De-sense | 
| 3.3.4. | Multifunctional TIMs as a Solution | 
| 3.3.5. | Dual functionalities - heat dissipation and EMI shielding -  Laird's CoolZorb (1) | 
| 3.3.6. | Dual functionalities - heat dissipation and EMI shielding -  Laird's CoolZorb (2) | 
| 3.3.7. | EMI Gaskets | 
| 3.3.8. | Laird | 
| 3.3.9. | Schlegel - TIM and EMI | 
| 3.3.10. | TIM Combined with EMI Shielding Properties | 
| 3.4. | EMI and TIMs in other applications | 
| 3.4.1. | Consumer Electronics - Graphite | 
| 3.4.2. | Use-Case: Synthetic Graphite Sheet - DSN | 
| 3.4.3. | Price Comparison of Graphite Sheets | 
| 3.4.4. | Use Case: Panasonic G-TIM (1) | 
| 3.4.5. | Use Case: Panasonic G-TIM (2) | 
| 3.4.6. | Players - EMI TIMs | 
| 4. | TIM IN EV BATTERY PACKS | 
| 4.1. | Introduction | 
| 4.1.1. | Introduction to thermal interface materials for EVs | 
| 4.1.2. | TIM pack and module overview | 
| 4.1.3. | TIM application - pack and modules | 
| 4.1.4. | TIM application by cell format | 
| 4.1.5. | Key properties for TIMs in EVs | 
| 4.1.6. | Gap pads in EV batteries | 
| 4.1.7. | Switching to gap fillers from pads | 
| 4.1.8. | Dispensing TIMs introduction | 
| 4.1.9. | Challenges for dispensing TIM | 
| 4.1.10. | Thermally conductive adhesives in EV batteries | 
| 4.1.11. | Material options and market comparison | 
| 4.1.12. | TIM chemistry comparison | 
| 4.1.13. | The silicone dilemma for the automotive market | 
| 4.1.14. | Thermal interface material fillers for EV batteries | 
| 4.1.15. | TIM filler comparison and adoption | 
| 4.1.16. | Thermal conductivity comparison of suppliers | 
| 4.1.17. | Factors impacting TIM pricing | 
| 4.2. | TIM in cell-to-pack designs | 
| 4.2.1. | TIM pricing by supplier | 
| 4.2.2. | What is cell-to-pack? | 
| 4.2.3. | Drivers and challenges for cell-to-pack | 
| 4.2.4. | What is cell-to-chassis/body? | 
| 4.2.5. | Cell-to-pack and Cell-to-body Designs Summary | 
| 4.2.6. | Gravimetric energy density and cell-to-pack ratio | 
| 4.2.7. | Outlook for cell-to-pack & cell-to-body designs | 
| 4.2.8. | Gap filler to thermally conductive adhesives | 
| 4.2.9. | Thermal conductivity shift | 
| 4.3. | TIM players in EVs | 
| 4.3.1. | TCA requirements | 
| 4.3.2. | Bostik | 
| 4.3.3. | DEMAK | 
| 4.3.4. | Dow | 
| 4.3.5. | DuPont | 
| 4.3.6. | ELANTAS | 
| 4.3.7. | Elkem | 
| 4.3.8. | Epoxies Etc. | 
| 4.3.9. | H.B. Fuller | 
| 4.3.10. | Henkel | 
| 4.3.11. | Momentive | 
| 4.3.12. | Parker Lord | 
| 4.3.13. | Polymer Science | 
| 4.3.14. | Sekisui | 
| 4.3.15. | Shin-Etsu | 
| 4.3.16. | Wacker Chemie | 
| 4.4. | TIM EV use cases | 
| 4.4.1. | Audi e-tron | 
| 4.4.2. | BYD Blade | 
| 4.4.3. | Chevrolet Bolt | 
| 4.4.4. | Fiat 500e | 
| 4.4.5. | Ford Mustang Mach-E | 
| 4.4.6. | MG ZS EV | 
| 4.4.7. | Nissan Leaf | 
| 4.4.8. | Smart Fortwo (Mercedes) | 
| 4.4.9. | EV use-case: Hyundai IONIQ 5/Kia EV6 | 
| 4.4.10. | Rivian R1T | 
| 4.4.11. | Tesla Model 3/Y | 
| 4.4.12. | Tesla 4680 pack | 
| 4.4.13. | EV use-case summary | 
| 4.5. | TIM forecasts for EVs | 
| 4.5.1. | TIM use by vehicle and by year | 
| 4.5.2. | TIM demand per vehicle | 
| 4.5.3. | TIM Forecast for EV batteries by TIM type (kg) | 
| 4.5.4. | TIM forecast for EV batteries by TIM type (revenue, US$) | 
| 4.5.5. | TIM Forecast for EV batteries by vehicle type (kg and US$) | 
| 5. | TIMS IN DATA CENTERS | 
| 5.1. | Overview | 
| 5.1.1. | Introduction to data centers | 
| 5.1.2. | Thermal management needs for data centers | 
| 5.1.3. | Power use effectiveness | 
| 5.1.4. | Data center downtime causes significant problems | 
| 5.1.5. | Data center equipment - top level overview | 
| 5.1.6. | Data center structure | 
| 5.1.7. | Data center switch topology - three layer and spine-leaf architecture | 
| 5.1.8. | K-ary fat tree topology | 
| 5.2. | TIM data center players and use cases | 
| 5.2.1. | Where are TIMs used in data centers? | 
| 5.2.2. | Common types of TIMs in data centers - line card level | 
| 5.2.3. | TIMs in data centers - line card level - transceivers | 
| 5.2.4. | TIMs in server boards | 
| 5.2.5. | Server board layout | 
| 5.2.6. | TIMs for data center - server boards, switches and routers | 
| 5.2.7. | Data Center Switch Players | 
| 5.2.8. | How TIMs are used in data center switches - FS N8560-32C 32x 100GbE Switch | 
| 5.2.9. | WS-SUP720 supervisor 720 module | 
| 5.2.10. | Ubiquiti UniFi USW-Leaf Switch | 
| 5.2.11. | FS S5850-48S6Q 48x 10GbE and 6x 40GbE Switch | 
| 5.2.12. | Cisco Nexus 7700 Supervisor 2E module | 
| 5.2.13. | How does data center power supply system work? | 
| 5.2.14. | TIMs for power supply converters (1): AC-DC and DC-DC | 
| 5.2.15. | TIMs for data center power supplies (2) | 
| 5.2.16. | TIMs for data center power supplies (3) | 
| 5.2.17. | How TIMs are used in data center power supplies (4) | 
| 5.2.18. | How TIMs are Used in Data Center Power Supplies (5) | 
| 5.2.19. | How TIMs are used in data center power supply (6) | 
| 5.2.20. | TIMs for data centers - power supply converters | 
| 5.3. | TIMs in data center - trends and forecasts | 
| 5.3.1. | TIM trends in data centers | 
| 5.3.2. | Estimating the TIM areas in server boards | 
| 5.3.3. | Number of server boards per rack and data center | 
| 5.3.4. | Total TIM area in server boards | 
| 5.3.5. | Estimating the number of data center switches | 
| 5.3.6. | Area of TIM per switch | 
| 5.3.7. | TIM area for leaf and spine switch | 
| 5.3.8. | TIM area for leaf and spine switch forecast | 
| 5.3.9. | TIM consumption in data center power supplies | 
| 5.3.10. | Number of power supplies forecast and TIM area forecast | 
| 5.3.11. | Forecast summary - TIM area for different data center components | 
| 5.3.12. | Forecast summary - TIM mass for different data center components | 
| 5.3.13. | Forecast summary - TIM revenue for different data center components | 
| 5.3.14. | TIM requirements for data center applications | 
| 6. | TIMS IN CONSUMER ELECTRONICS | 
| 6.1. | Overview | 
| 6.1.1. | Introduction | 
| 6.1.2. | Thermal Management Differences: 4G vs 5G Smartphones | 
| 6.2. | Use cases | 
| 6.2.1. | Overview of Thermal Management Materials Application Areas | 
| 6.2.2. | Use-case: Apple iPhone X | 
| 6.2.3. | Use-case: Samsung Galaxy S9 (1) | 
| 6.2.4. | Use-case: Samsung Galaxy S9 (2) | 
| 6.2.5. | Galaxy Note 9 Carbon Water Cooling System | 
| 6.2.6. | Use-case: Oppo R17 | 
| 6.2.7. | Use-case: Samsung Galaxy S10 and S10e | 
| 6.2.8. | Use-case: LG v50 ThinQ 5G | 
| 6.2.9. | Use-case: Samsung Galaxy S10 5G | 
| 6.2.10. | Use-case: Samsung Galaxy Note 10+ 5G | 
| 6.2.11. | Use-case: Apple iPhone 12 | 
| 6.2.12. | Use-case: LG v60 ThinQ 5G | 
| 6.2.13. | Use-case: Nubia Red Magic 5G | 
| 6.2.14. | Use-case: Samsung Galaxy S20 5G | 
| 6.2.15. | Use-case: Samsung Galaxy S21 5G | 
| 6.2.16. | Use-case: Samsung Galaxy Note 20 Ultra 5G | 
| 6.2.17. | Use-case: Huawei Mate 20 X 5G | 
| 6.2.18. | Use-case: Sony Xperia Pro | 
| 6.2.19. | Use-case: Apple iPhone 13 Pro | 
| 6.2.20. | Use-case: Google Pixel 6 Pro | 
| 6.2.21. | Use-case: iPhone 14 Pro Max | 
| 6.2.22. | Use case: Samsung Galaxy Z Fold4 | 
| 6.2.23. | Use case: Oneplus Pro 10 | 
| 6.2.24. | Smartphone Thermal Material Estimate Summary | 
| 6.2.25. | Trends in Smartphone Thermal Material Utilization | 
| 6.2.26. | Graphitic Heat Spreaders | 
| 6.2.27. | Emerging Advanced Material Solutions | 
| 6.2.28. | Insulation Material | 
| 6.2.29. | Insulation Material (2) | 
| 6.2.30. | Use case: iPad Pro 9.7" | 
| 6.2.31. | Use case: iPad Pro 11" | 
| 6.2.32. | Use case: Samsung galaxy tab A8 | 
| 6.2.33. | Use case: MacBook Pro 2019 | 
| 6.2.34. | Use case: MacBook Air 2022 - could more effective TIM help to remove traditional fan cooling? | 
| 6.2.35. | Use case: Microsoft Surface Laptop 3 13.5'' | 
| 6.2.36. | Use case: Microsoft Surface Laptop 5 | 
| 6.2.37. | Use case: HUAWEI MateBook D 14 | 
| 6.2.38. | Trends in Consumer Electronics: TIM Utilization | 
| 6.3. | Forecasts | 
| 6.3.1. | Consumer Electronics Unit Forecast | 
| 6.3.2. | Thermal Interface Material and Heat Spreader Area Forecast in Consumer Electronics | 
| 6.3.3. | Thermal Interface Material and Heat Spreader Mass Forecast in Consumer Electronics | 
| 6.3.4. | Thermal Interface Material and Heat Spreader Market Size Forecast in Consumer Electronics | 
| 7. | TIMS IN ADAS | 
| 7.1. | Introduction | 
| 7.1.1. | Typical Sensor Suite for Autonomous Cars | 
| 7.1.2. | The Sensor Trifactor | 
| 7.1.3. | Sensors and Their Purpose | 
| 7.2. | Thermal Management in ADAS Sensors | 
| 7.2.1. | What are the Challenges? | 
| 7.3. | TIMs for ADAS Cameras | 
| 7.3.1. | Camera Anatomy | 
| 7.3.2. | Thermal Interface Materials for ADAS Cameras | 
| 7.3.3. | Bosch ADAS Camera | 
| 7.3.4. | Tesla's Triple Lens Camera | 
| 7.3.5. | ZF S-Cam4 Triple and Single Lens Cameras | 
| 7.4. | TIMs for ADAS Radar | 
| 7.4.1. | Radar Anatomy | 
| 7.4.2. | Board Trends | 
| 7.4.3. | Radars are Getting Smaller | 
| 7.4.4. | Thermal Interface Materials for ADAS Radars | 
| 7.4.5. | Bosch 77 GHz Radar | 
| 7.4.6. | Bosch Mid-Range Radar | 
| 7.4.7. | MANDO Long-Range Radar | 
| 7.4.8. | DENSO DNMWR006 Radar | 
| 7.4.9. | DENSO DNMWR010 Radar | 
| 7.4.10. | GM Adaptive Cruise Control Radar | 
| 7.4.11. | TIM with Radar Board Trends | 
| 7.5. | TIMs for ADAS LiDAR | 
| 7.5.1. | Temperature and LiDAR | 
| 7.5.2. | LiDAR Thermal Considerations | 
| 7.5.3. | Thermal for LiDAR | 
| 7.5.4. | Thermal Interface Materials for ADAS LiDAR | 
| 7.5.5. | 3irobotics Delta3 | 
| 7.5.6. | Continental Short-Range LiDAR | 
| 7.5.7. | Ouster OS1-64 LiDAR | 
| 7.5.8. | Valeo Scala LiDAR | 
| 7.6. | TIMs for ADAS Computers and ECUs | 
| 7.6.1. | Possible New TIM Locations: Laser Driver Dies | 
| 7.6.2. | Computers and ECUs in ADAS | 
| 7.6.3. | Lack of TIMs in Previous ECU Designs | 
| 7.6.4. | Audi zFAS Computer | 
| 7.6.5. | Tesla's Computer Generations | 
| 7.6.6. | Tesla's Liquid-Cooled MCU/ECU | 
| 7.6.7. | Thermal Interface Materials in the ECU | 
| 7.6.8. | ADAS Chip Power Progression | 
| 7.6.9. | 3M — TIM and EMI for ECUs | 
| 7.6.10. | Henkel — ECU Case Study | 
| 7.6.11. | Audi zFAS | 
| 7.6.12. | Tesla HW 2.5 | 
| 7.6.13. | Tesla HW 3.0 | 
| 7.7. | TIM Players in ADAS | 
| 7.7.1. | 3M | 
| 7.7.2. | Dow | 
| 7.7.3. | Fujipoly | 
| 7.7.4. | GLPOLY | 
| 7.7.5. | Henkel — TIM for Cameras | 
| 7.7.6. | Henkel — TIM for Radars | 
| 7.7.7. | Laird — ADAS TIMs | 
| 7.7.8. | Momentive | 
| 7.7.9. | Parker — TIMs for Cameras | 
| 7.7.10. | Sekisui | 
| 7.7.11. | Shin Etsu | 
| 7.7.12. | Summary of Performance for TIM Players | 
| 7.7.13. | Thermal Interface Materials for ADAS Sensors | 
| 7.8. | TIM Requirements and Total Forecasts for ADAS Sensors | 
| 7.8.1. | TIM Requirements for ADAS Components | 
| 7.8.2. | TIM Properties by Application | 
| 7.8.3. | Density and Thermal Conductivity of TIMs for ADAS | 
| 7.8.4. | TIM Requirements for ADAS Components | 
| 7.8.5. | TIM Forecast for ADAS (Area) 2020-2033 | 
| 7.8.6. | TIM Forecast for ADAS (Tonnes) 2020-2033 | 
| 7.8.7. | TIM: Price Analysis | 
| 7.8.8. | TIM Forecast for ADAS ($ Millions) 2020-2033 | 
| 8. | TIMS IN 5G | 
| 8.1. | Overview | 
| 8.1.1. | Anatomy of a Base Station: Summary | 
| 8.1.2. | Baseband Processing Unit and Remote Radio Head | 
| 8.1.3. | Path Evolution from Baseband Unit to Antenna | 
| 8.1.4. | TIM Types in 5G | 
| 8.1.5. | Value Proposition for Liquid TIMs | 
| 8.2. | TIM Suppliers for 5G | 
| 8.2.1. | 3M - Boron Nitride Fillers | 
| 8.2.2. | GLPOLY | 
| 8.2.3. | Henkel - Liquid TIMs for Data & Telecoms | 
| 8.2.4. | Honeywell | 
| 8.2.5. | Laird (DuPont) | 
| 8.2.6. | Momentive | 
| 8.2.7. | NeoGraf | 
| 8.2.8. | Parker | 
| 8.2.9. | TIM Suppliers Targeting 5G Applications | 
| 8.2.10. | TIM Properties and Players for 5G Infrastructure | 
| 8.3. | TIMs for Antenna | 
| 8.3.1. | TIM Example: Samsung 5G Access Point | 
| 8.3.2. | TIM Example: Samsung Outdoor CPE Unit | 
| 8.3.3. | TIM Example: Samsung Indoor CPE Unit | 
| 8.3.4. | TIM Forecast for 5G Antenna by Station Size | 
| 8.3.5. | TIM Forecast for 5G Antenna by Station Frequency | 
| 8.4. | TIMs for BBU | 
| 8.4.1. | The Six Components of a Baseband Processing Unit | 
| 8.4.2. | Thermal Material Opportunities for the BBU | 
| 8.4.3. | Examples of 5G BBUs | 
| 8.4.4. | TIM in BBUs | 
| 8.4.5. | BBU Parts I: Main Control Board | 
| 8.4.6. | BBU Parts II & III: Baseband Processing Board & Transmission Extension Board | 
| 8.4.7. | BBU Parts IV & V: Radio Interface Board & Satellite-card Board | 
| 8.4.8. | BBU parts VI: TIM Area in the Power Supply Board | 
| 8.4.9. | Summary | 
| 8.4.10. | TIM for 5G BBU | 
| 8.5. | TIMs for 5G Power Supplies | 
| 8.5.1. | Power Consumption in 5G | 
| 8.5.2. | Challenges to the 5G Power Supply Industry | 
| 8.5.3. | The Dawn of Smart Power? | 
| 8.5.4. | GaN Systems - GaN Power Supply and Wireless Power | 
| 8.5.5. | Power Consumption Forecast for 5G | 
| 8.5.6. | TIM Forecast for Power Supplies | 
| 8.6. | Total TIM Forecasts for 5G | 
| 8.6.1. | Total TIM Area Forecast for 5G Stations: 2023-2033 | 
| 8.6.2. | Total TIM Mass Forecast for 5G Stations: 2023-2033 | 
| 8.6.3. | Total TIM Revenue Forecast for 5G Stations: 2023-2033 | 
| 8.6.4. | Total TIM Area Forecast for 5G Stations: 2023-2033 | 
| 9. | FORECAST SUMMARY | 
| 9.1. | TIM area forecast summary by application | 
| 9.1.1. | TIM By Application - Area Forecast: 2023-2033 | 
| 9.1.2. | TIM Area Forecast for EV Batteries: 2023-2033 | 
| 9.1.3. | TIM Area Forecast for 5G Stations: 2023-2033 | 
| 9.1.4. | TIM Area Forecast for ADAS: 2023-2033 | 
| 9.1.5. | TIM and Heat Spreader Area Forecast for Consumer Electronics: 2023-2033 | 
| 9.1.6. | TIM Area Forecast For Data Centers: 2023-2033 | 
| 9.2. | TIM mass forecast by application | 
| 9.2.1. | TIM By Application - Mass Forecast: 2023-2033 | 
| 9.2.2. | TIM Mass Forecast for 5G Stations: 2023-2033 | 
| 9.2.3. | TIM Mass Forecast for ADAS: 2023-2033 | 
| 9.2.4. | TIM and Heat Spreader Mass Forecast For Consumer Electronics: 2023-2033 | 
| 9.2.5. | TIM Mass Forecast For Data Centers: 2023-2033 | 
| 9.2.6. | TIM Mass Forecast for EV batteries: 2023-2033 | 
| 9.3. | TIM revenue forecast by application | 
| 9.3.1. | Unit TIM Price Forecast: 2023 - 2033 | 
| 9.3.2. | TIM Revenue Forecast: 2023-2033 | 
| 9.3.3. | TIM Revenue Forecast for 5G Stations: 2023-2033 | 
| 9.3.4. | TIM Revenue Forecast For ADAS: 2020-2033 | 
| 9.3.5. | TIM and Heat Spreader Mass Forecast For Consumer Electronics: 2023-2033 | 
| 9.3.6. | TIM Revenue Forecast For Data Center: 2023-2033 | 
| 9.3.7. | TIM Revenue Forecast for EV Batteries: 2023-2033 | 
| 10. | COMPANY PROFILES | 
| 10.1. | 3M | 
| 10.2. | ADA Technologies | 
| 10.3. | AluChem | 
| 10.4. | AOS Thermal | 
| 10.5. | Arieca | 
| 10.6. | AzTrong | 
| 10.7. | Bando | 
| 10.8. | Bdtronic | 
| 10.9. | BNNano | 
| 10.10. | BNNT | 
| 10.11. | Cambridge Nanotherm | 
| 10.12. | Carbice | 
| 10.13. | CondAlign | 
| 10.14. | Dexerials | 
| 10.15. | Deyang Carbonene | 
| 10.16. | Dow Corning | 
| 10.17. | Dupont | 
| 10.18. | Enerdyne | 
| 10.19. | Fujipoly | 
| 10.20. | Henkel | 
| 10.21. | Hitek Electronic Materials | 
| 10.22. | HyMet Thermal Interfaces | 
| 10.23. | Indium Corporation | 
| 10.24. | Inkron | 
| 10.25. | KULR Technology | 
| 10.26. | Nanoramic Laboratories | 
| 10.27. | NeoGraf Solutions | 
| 10.28. | Parker Lord | 
| 10.29. | Polymatech | 
| 10.30. | Schlegel Electronic Materials | 
| 10.31. | Sixth Element | 
| 10.32. | Smart High Tech |