| 1. | EXECUTIVE SUMMARY |
| 1.1. | Report Introduction |
| 1.2. | Power Electronics in Electric Vehicles |
| 1.3. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride Semiconductors |
| 1.4. | Power Electronics & Battery Shortages |
| 1.5. | SiC Drives 800V Platforms |
| 1.6. | EV Markets Surge in 2022 |
| 1.7. | Inverter Forecast 2020-2033 (GW): GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V |
| 1.8. | Discretes vs Power Modules for Inverters 2020-2033 |
| 1.9. | Inverter Power Density Increases Over Time |
| 1.10. | Automotive: Key Application for Sintering |
| 1.11. | Power Electronics: Materials Trends Overview |
| 1.12. | Inverter Market Share 2020-2033: GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V |
| 1.13. | 800V Model Announcements in China (2022) |
| 1.14. | Evolving SiC Supply Relationships |
| 1.15. | OBC by Level: 4kW, 6-11.5kW, 16-22kW 2023- 2033 |
| 1.16. | OBC & DC-DC Converter: Si, SiC, GaN 2020 - 2033 (GW) |
| 1.17. | Inverter, OBC, DC-DC Converter 2020-2023 (GW) |
| 1.18. | Inverter, OBC, DC-DC Converter 2020-2023 (US$ billion) |
| 1.19. | IDTechEx Company Profiles |
| 2. | ELECTRIC VEHICLE MARKETS: REGIONAL TRENDS & FUTURE GROWTH |
| 2.1. | Electric Vehicle Definitions |
| 2.2. | Electric Vehicles: Typical Specs |
| 2.3. | Exponential Growth in Regional EV Markets |
| 2.4. | Summary of Regional Trends & Drivers for EVs in 2022 |
| 2.5. | Regional Trends: China |
| 2.6. | NEV Sales by Vehicle Class |
| 2.7. | The Dual-Credit System (1) |
| 2.8. | The Dual-Credit System (2) |
| 2.9. | Regional Trends: EU + UK + EFTA |
| 2.10. | Europe Emissions Standards |
| 2.11. | EU ICE Ban by 2035 |
| 2.12. | EU 'Fit for 55' |
| 2.13. | Regional Trends: US |
| 2.14. | Electric Pickups - The Next Big Thing |
| 2.15. | Hybrid Car Sales Surges |
| 2.16. | Powertrain Tailpipe Emissions Comparison |
| 2.17. | Automaker & Government EV Targets |
| 2.18. | Cars: Total Cost of Ownership |
| 2.19. | Shortages Across the Supply Chain |
| 2.20. | Grid Emissions (1) |
| 2.21. | Grid Emissions (2) |
| 2.22. | Chip Shortages - Background |
| 2.23. | Semiconductor Content Increased |
| 3. | OVERVIEW OF EV POWER ELECTRONICS & WBG SEMICONDUCTORS |
| 3.1. | What is Power Electronics? |
| 3.1.1. | Power Electronics Use in Electric Vehicles |
| 3.1.2. | Transistor History & MOSFET Overview |
| 3.1.3. | Wide Bandgap (WBG) Semiconductor Advantages & Disadvantages |
| 3.1.4. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride Semiconductors |
| 3.1.5. | Advantages of SiC Material |
| 3.1.6. | Limitations of SiC Power Devices |
| 3.1.7. | GaN's Potential to Reach High Voltage |
| 3.1.8. | SiC & GaN Have Substantial Room for Improvement |
| 3.1.9. | Automotive GaN Device Suppliers are Growing |
| 3.1.10. | GaN to Become Preferred OBC Technology |
| 3.1.11. | Challenges for GaN Devices |
| 3.1.12. | SiC Power Roadmap |
| 3.1.13. | Applications Summary for WBG Devices |
| 3.2. | Inverter, OBC, Converter Design & Si, SiC, GaN Outlook |
| 3.2.1. | Inverter Overview |
| 3.2.2. | Pulse Width Modulation |
| 3.2.3. | Traditional EV Inverter |
| 3.2.4. | Discretes & Modules |
| 3.2.5. | Inverter Printed Circuit Boards |
| 3.2.6. | Electric Vehicle Inverter Benchmarking |
| 3.2.7. | SiC Impact on the Inverter Package |
| 3.2.8. | Inverter Forecast 2020 - 2033 (GW): GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V |
| 3.2.9. | OBC & DC-DC Converter: Si, SiC, GaN 2020-2033 (GW) |
| 3.2.10. | Onboard Charger Circuit Components |
| 3.2.11. | Tesla Onboard Charger / DC-DC Converter |
| 3.2.12. | OBC by Level: 4kW, 6-11.5kW, 16-22kW 2023- 2033 |
| 4. | SUPPLY CHAIN FOR POWER SEMICONDUCTOR MATERIALS, DEVICES & OEMS |
| 4.1. | Automotive Power SC Supplier Market Shares |
| 4.2. | Evolving SiC Supply Relationships |
| 4.3. | SiC Supply Chain in 2023 |
| 4.4. | Infineon CoolSiC Efficiency Gains |
| 4.5. | Infineon Establishing Major OEM Partnerships |
| 4.6. | Hyundai Diversifies SiC Supply for Best-Selling 800V E-GMP Platform |
| 4.7. | ROHM Semiconductor Expands SiC Production Capacity |
| 4.8. | STMicroelectronics Releases ACEPACK in Race for Market Leadership |
| 4.9. | Wolfspeed: Major Investment & OEM Partnerships for SiC |
| 4.10. | Delphi Technologies (BorgWarner) Supply Luxury Automakers with Viper SiC Module |
| 4.11. | BorgWarner Integrated Drive Module for Ford |
| 4.12. | On Semi EliteSiC |
| 4.13. | GM From Bolt & Volt to Ultium |
| 4.14. | Hitachi Double Sided IGBTs to Major OEM |
| 4.15. | Volvo Heavy Duty SiC Inverter |
| 4.16. | Continental / Jaguar Land Rover |
| 4.17. | Nissan Leaf Custom Design |
| 5. | POWER ELECTRONICS PACKAGES: EV USE-CASES |
| 5.1. | Toyota Prius 2004-2010 |
| 5.2. | 800V Si IGBT Choices |
| 5.3. | 2008 Lexus |
| 5.4. | Toyota Prius 2010-2015 |
| 5.5. | Nissan Leaf 2012 |
| 5.6. | Honda Accord 2014 |
| 5.7. | Honda Fit (by Mitsubishi) |
| 5.8. | Toyota Prius 2016 Onwards |
| 5.9. | Chevrolet Volt 2016 (by Delphi) |
| 5.10. | Cadillac 2016 (by Hitachi) |
| 5.11. | BWM i3 (by Infineon) |
| 5.12. | STMicro |
| 5.13. | Continental / Jaguar Land Rover Inverter |
| 5.14. | Nissan Leaf Custom Inverter Design |
| 5.15. | Danfoss |
| 5.16. | BorgWarner |
| 5.17. | onsemi |
| 6. | EVOLUTION OF PACKAGE MATERIALS & THERMAL MANAGEMENT: DIE-ATTACH, WIRE BONDING, TIM, WATER/OIL COOLING AND MORE |
| 6.1. | Overview |
| 6.1.1. | Power Module Packaging Over the Generations |
| 6.1.2. | Power Electronics Material Evolution |
| 6.1.3. | Automotive: Key Application for Sintering |
| 6.1.4. | Module Packaging Material Dimensions |
| 6.1.5. | OEM Power Module Material Innovations |
| 6.1.6. | Die Attach Materials: Solder, Ag & Cu Sintering & Key Players |
| 6.1.7. | WBG Moves Beyond the Limits of SAC |
| 6.1.8. | Inverter Power Density Increases Over Time |
| 6.1.9. | Die and Substrate Attach are Common Failure Modes |
| 6.1.10. | Ag Sintering with WBG Semiconductors |
| 6.1.11. | Resolving Challenges with Ag Sintering |
| 6.1.12. | Nano Particle Ag Sinter |
| 6.1.13. | Power Module Supply Chain & Innovations |
| 6.1.14. | Summary of Ag sintering, Solder and TLPB |
| 6.1.15. | Toyo Chem: Sintered Die Attach Paste |
| 6.1.16. | LG: Ag Sintering Paste with Low Sintering Temperature |
| 6.1.17. | Amo Green: Pressure-less Nano Ag Sintering Paste |
| 6.1.18. | Indium Corp: Nano Ag Pressure-less Sinter Paste |
| 6.1.19. | Nihon Superior: Nano Silver for Sintering |
| 6.1.20. | Cu Sintering Pastes Improve Ag Sintered Performance |
| 6.1.21. | Hitachi: Cu Sintering Paste |
| 6.1.22. | Cu Sintering: Characteristics |
| 6.1.23. | Reliability of Cu Sintered Joints |
| 6.1.24. | Mitsui Mining: Nano Copper Pressured and Pressure-less Sintering Under N2 Environment |
| 6.1.25. | Mitsui Mining: Nano Copper Pressure-less Sintering Under N2 Environment |
| 6.1.26. | Die Attach Technology Trends |
| 6.1.27. | Wire Bond Evolution & Future Alternatives |
| 6.1.28. | Wire Bonds a Failure Point |
| 6.1.29. | Alternative Wire Bonding Techniques |
| 6.1.30. | Die Top System - Heraeus |
| 6.1.31. | Direct Lead Bonding (Mitsubishi) |
| 6.1.32. | Tesla Inverter Design Evolution |
| 6.1.33. | Embedded Lead Frames for Thermal Performance |
| 6.1.34. | Technology Evolution Beyond Al Wire Bonding |
| 6.2. | Substrate Materials & Future Alternatives |
| 6.2.1. | The Choice of Ceramic Substrate Technology |
| 6.2.2. | AlN: Overcoming its Mechanical Weakness |
| 6.2.3. | Thermal Conductivity vs Thermal Expansion |
| 6.2.4. | Ceramics: CTE Mismatch |
| 6.2.5. | Approaches to Metallisation: DPC, DBC, AMB and Thick Film Metallisation |
| 6.2.6. | Direct Plated Copper (DPC): Pros and Cons |
| 6.2.7. | Double Bonded Copper (DBC): Pros and Cons |
| 6.2.8. | Active Metal Brazing (AMB): Pros and Cons |
| 6.2.9. | Thick Film Printing |
| 6.2.10. | Heraeus - Materials for Power Electronics |
| 6.2.11. | ALMT - MgSiC Baseplate |
| 6.3. | Thermal Management |
| 6.3.1. | Optimal Temperatures for Multiple Components |
| 6.3.2. | Single Side, Double Side, Direct, and Direct Cooling |
| 6.3.3. | Double-Sided Cooling Examples |
| 6.3.4. | Baseplate, Heat sink, and Encapsulation Materials |
| 6.3.5. | Removing Thermal Interface Materials |
| 6.3.6. | Why TIM is Used in Power Electronics |
| 6.3.7. | Why the Drive to Eliminate the TIM? |
| 6.3.8. | Thermal Grease: Other Shortcomings |
| 6.3.9. | EV Inverter Modules Where TIM has Been Eliminated (1) |
| 6.3.10. | EV Inverter Modules Where TIM has Been Eliminated (2) |
| 6.3.11. | Infineon - Pre-Applied TIM |
| 6.3.12. | IGBTs and SiC are not the Only TIM Area in Inverters |
| 6.3.13. | Cooling power electronics: water or oil |
| 6.3.14. | Inverter Package Cooling |
| 6.3.15. | Drivers for Direct Oil Cooling of Inverters |
| 6.3.16. | Advantages, Disadvantages and Drivers for Oil Cooled Inverters |
| 6.3.17. | Direct Oil Cooling Projects |
| 6.3.18. | Inverter Cooling Strategy Forecast (Units) |
| 6.3.19. | Ford Mustang Mach-E |
| 6.3.20. | Fraunhofer and Marelli - Directly Cooled Inverter |
| 6.3.21. | Hitachi - Oil Cooled Inverter |
| 6.3.22. | Jaguar I-PACE 2019 |
| 6.3.23. | Lucid - Water Cooled Onboard Charger |
| 6.3.24. | Nissan Leaf |
| 6.3.25. | Renault Zoe 2013 (Continental) |
| 6.3.26. | Rivian |
| 6.3.27. | Senior Flexonics - IGBT Heat Sink Design |
| 6.3.28. | Tesla Model 3 |
| 6.3.29. | VW ID |
| 7. | HIGH VOLTAGE PLATFORM (800V) MARKET DRIVERS & FUTURE DEVELOPMENTS |
| 7.1. | SiC Drives 800V Platforms |
| 7.2. | Emerging 800V Platforms & SiC Inverters |
| 7.3. | Inverter Market Share 2020 - 2033: SiC 1200V, SiC 600V, GaN 600V, Si IGBT 600V |
| 7.4. | 800V Model Announcements in China (2022) |
| 7.5. | 800V For & Against |
| 7.6. | DCFC Impact on Li-ion Cells |
| 7.7. | Fast Charge Cell Design Hierarchy - Levers to Pull |
| 7.8. | DC Fast Charging Levels |
| 7.9. | AC & DC Charging Installations 2015-2032 |
| 7.10. | 800V Platform Discussion & Outlook |
| 8. | FORECASTS |
| 8.1. | Exponential Growth in Regional EV Markets |
| 8.2. | Methodology |
| 8.3. | Inverters per Car Forecast |
| 8.4. | Multiple Motors / Inverters per Vehicle |
| 8.5. | Inverter Forecast 2020 - 2033 (GW): GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V |
| 8.6. | Inverter Market Share 2020 - 2033: GaN 600V, Si IGBT 600V, SiC MOSFET 600V, 1200V |
| 8.7. | Inverter Cooling Strategy Forecast (Units) |
| 8.8. | Discretes vs Power Modules for Inverters 2020 - 2033 |
| 8.9. | OBC & DC-DC Converter: Si, SiC, GaN 2020 - 2033 (GW) |
| 8.10. | Inverter, OBC, DCDC Converter 2020 - 2023 (GW) |
| 8.11. | Inverter, OBC, DCDC Converter 2020 - 2023 (US$ billion) |
| 8.12. | OBC by Level: 4kW, 6-11.5kW, 16-22kW 2023- 2033 |
| 8.13. | Inverter, OBC & Converter, Si, SiC, GaN Cost Assumptions (US$ per kW) |
| 8.14. | AC & DC Charging Installations 2015-2032 |
| 9. | COMPANY PROFILES |
| 9.1. | Dynex |
| 9.2. | Efficient Power Conversion: GaN FETs |
| 9.3. | Elaphe |
| 9.4. | Equipmake |
| 9.5. | ESI Automotive |
| 9.6. | General Electric: Megawatt Converters |
| 9.7. | Infineon |
| 9.8. | IQE |
| 9.9. | Nexperia: GaN for EV Power Electronics |
| 9.10. | Power Electronics: EV Charging |