| 1. | EXECUTIVE SUMMARY | 
| 1.1. | What's new in this report? | 
| 1.2. | Optimal temperatures for multiple components | 
| 1.3. | Battery thermal management competition | 
| 1.4. | Thermal system architecture | 
| 1.5. | BEV cars with heat pumps forecast (units) | 
| 1.6. | Battery thermal management strategy by OEM | 
| 1.7. | Higher battery capacities and liquid cooling | 
| 1.8. | Cooling methodologies by region | 
| 1.9. | Battery thermal management strategy forecast (GWh) | 
| 1.10. | Thermal management in cell-to-pack designs | 
| 1.11. | Immersion fluids: thermal conductivity and specific heat | 
| 1.12. | Immersion fluid volume forecast (passenger cars, liters) | 
| 1.13. | Thermal conductivity comparison of suppliers | 
| 1.14. | Thermal conductivity shift | 
| 1.15. | TIM pricing by supplier | 
| 1.16. | TIM forecast for EV batteries by TIM type (revenue, US$) | 
| 1.17. | Fire protection materials: main categories | 
| 1.18. | Fire protection material market shares | 
| 1.19. | Fire protection materials forecast (kg) | 
| 1.20. | Motor thermal management competition | 
| 1.21. | Motor cooling strategy by power | 
| 1.22. | Cooling technology: OEM strategies | 
| 1.23. | Motor cooling strategy by region | 
| 1.24. | Motor cooling strategy forecast (units) | 
| 1.25. | Power electronics thermal management competition | 
| 1.26. | The transition to SiC | 
| 1.27. | Advanced wire bonding techniques for inverters | 
| 1.28. | Why metal sintering for power electronics? | 
| 1.29. | Drivers for direct oil cooling of inverters | 
| 1.30. | Inverter cooling strategy forecast (units) | 
| 1.31. | Company profiles | 
| 2. | INTRODUCTION | 
| 2.1. | The growing EV market and need for thermal management | 
| 2.2. | Electric vehicle definitions | 
| 2.3. | Optimal temperatures for multiple components | 
| 2.4. | Battery thermal management competition | 
| 2.5. | Motor thermal management competition | 
| 2.6. | Power electronics thermal management competition | 
| 3. | IMPACT OF TEMPERATURE AND THERMAL MANAGEMENT ON RANGE | 
| 3.1. | Range calculations | 
| 3.2. | Impact of ambient temperature and climate control | 
| 3.3. | Impact of ambient temperature and climate control | 
| 3.4. | Model comparison against ambient temperature | 
| 3.5. | Model comparison with climate control | 
| 3.6. | Model comparison with climate control | 
| 3.7. | Summary | 
| 4. | INNOVATIONS IN CABIN HEATING | 
| 4.1. | Holistic vehicle thermal management | 
| 4.2. | Technology timeline | 
| 4.3. | What is a heat pump? | 
| 4.4. | PTC vs heat pump | 
| 4.5. | The impact on EV range | 
| 4.6. | Recent EVs with heat pumps | 
| 4.7. | BEV cars with heat pumps forecast (units) | 
| 4.8. | Further innovations | 
| 4.9. | Advantages of sophisticated thermal management | 
| 4.10. | Thermal management advanced control: key players and technologies | 
| 4.11. | Thermal system supplier announcements | 
| 4.12. | General Motors - heat pump integration | 
| 4.13. | Hanon Systems - heat pump systems | 
| 5. | COOLANT FLUIDS, REFRIGERANTS, AND DIFFERENCES FOR EVS | 
| 5.1. | Thermal system architecture | 
| 5.2. | Thermal system architecture examples (1) | 
| 5.3. | Thermal system architecture examples (2) | 
| 5.4. | Coolant fluids in EVs | 
| 5.5. | What's different about fluids used for EVs? | 
| 5.6. | Electrical properties | 
| 5.7. | Corrosion with fluids | 
| 5.8. | Reducing viscosity | 
| 5.9. | Lubrizol - oils for EVs | 
| 5.10. | Arteco - Water-glycol coolants for EVs | 
| 5.11. | Dober - water-glycol coolants for EVs | 
| 5.12. | Refrigerant for EVs | 
| 5.13. | Summary and outlook | 
| 6. | THERMAL MANAGEMENT OF LI-ION BATTERIES IN ELECTRIC VEHICLES | 
| 6.1. | Current technologies and OEM strategies | 
| 6.1.1. | Introduction to EV battery thermal management | 
| 6.1.2. | Active vs passive cooling | 
| 6.1.3. | Passive battery cooling methods | 
| 6.1.4. | Active battery cooling methods | 
| 6.1.5. | Air cooling | 
| 6.1.6. | Liquid cooling | 
| 6.1.7. | Liquid cooling: design options | 
| 6.1.8. | Liquid cooling: alternative fluids | 
| 6.1.9. | Liquid cooling: large OEM announcements | 
| 6.1.10. | Refrigerant cooling | 
| 6.1.11. | Hyundai considering refrigerant cooling | 
| 6.1.12. | Coolants: comparison | 
| 6.1.13. | Cooling strategy thermal properties | 
| 6.1.14. | Analysis of battery cooling methods | 
| 6.1.15. | Battery thermal management strategy by OEM | 
| 6.1.16. | OEMs are converging on liquid cooling | 
| 6.1.17. | The emergence of fast charging | 
| 6.1.18. | Higher battery capacities and liquid cooling | 
| 6.1.19. | Why liquid cooling dominates | 
| 6.1.20. | Cooling methodologies by region | 
| 6.1.21. | Cooling methodologies by cell type | 
| 6.1.22. | Future global trends in OEM cooling methodologies | 
| 6.1.23. | Battery thermal management strategy forecast (GWh) | 
| 6.1.24. | IDTechEx outlook | 
| 6.1.25. | System changes moving to 800V | 
| 6.1.26. | Thermal management in 800V systems | 
| 6.1.27. | Thermal management in 800V systems | 
| 6.1.28. | Thermal management in cell-to-pack designs | 
| 6.2. | Immersion cooling for Li-ion batteries in EVs | 
| 6.2.1. | Immersion cooling: introduction | 
| 6.2.2. | Single-phase vs two-phase cooling | 
| 6.2.3. | Immersion cooling fluids requirements | 
| 6.2.4. | Immersion cooling architecture | 
| 6.2.5. | Players: immersion fluids for EVs (1) | 
| 6.2.6. | Players: immersion fluids for EVs (2) | 
| 6.2.7. | Players: immersion fluids for EVs (3) | 
| 6.2.8. | Engineered Fluids - dielectric immersion fluids | 
| 6.2.9. | Immersion fluids: density and thermal conductivity | 
| 6.2.10. | Immersion fluids: operating temperature | 
| 6.2.11. | Immersion fluids: thermal conductivity and specific heat | 
| 6.2.12. | Immersion fluids: viscosity | 
| 6.2.13. | Immersion fluids: breakdown voltage | 
| 6.2.14. | Immersion fluids: costs | 
| 6.2.15. | Immersion fluids: summary | 
| 6.2.16. | Players: XING Mobility, 3M and Castrol | 
| 6.2.17. | Players: Rimac and Solvay | 
| 6.2.18. | Players: Rimac ditching immersion? | 
| 6.2.19. | Players: M&I Materials and Faraday Future | 
| 6.2.20. | Players: Exoès, e-Mersiv and FUCHS Lubricants | 
| 6.2.21. | Players: Kreisel and Shell | 
| 6.2.22. | Players: Curtiss Motorcycles | 
| 6.2.23. | LION Electric | 
| 6.2.24. | McLaren Speedtail and Artura | 
| 6.2.25. | Mercedes-AMG | 
| 6.2.26. | SWOT analysis | 
| 6.2.27. | IDTechEx outlook | 
| 6.2.28. | Volume of immersion fluids in an EV | 
| 6.2.29. | Immersion market adoption forecast | 
| 6.2.30. | Immersion fluid volume forecast (passenger cars, liters) | 
| 6.2.31. | Immersion fluid volume forecast (construction and agriculture EVs, liters) | 
| 6.3. | Phase Change Materials (PCMs) | 
| 6.3.1. | Phase change materials (PCMs) | 
| 6.3.2. | Phase change materials as thermal energy storage | 
| 6.3.3. | Fast charge of Li-ion batteries using integrated battery thermal management (iBTM) - AllCell | 
| 6.3.4. | Calogy Solutions - heat pipe integration with PCMs | 
| 6.3.5. | Phase change materials - players | 
| 6.3.6. | PCM categories and pros and cons | 
| 6.3.7. | PCM vs battery case study | 
| 6.3.8. | Player: Sunamp | 
| 6.3.9. | PCMs - players in EVs | 
| 6.3.10. | Operating temperature range of commercial PCMs | 
| 6.3.11. | AllCell (Beam Global) | 
| 6.3.12. | PCMs - use-case and outlook | 
| 6.4. | Heat spreaders and cooling plates | 
| 6.4.1. | Inter-cell heat spreaders or cooling plates | 
| 6.4.2. | Chevrolet Volt and Dana | 
| 6.4.3. | Advanced cooling plates | 
| 6.4.4. | Advanced cold plate design | 
| 6.4.5. | Roll bond aluminium cold plates | 
| 6.4.6. | Examples of cold plate design | 
| 6.4.7. | DuPont - hybrid composite/metal cooling plate | 
| 6.4.8. | L&L Products - structural adhesive to enable a new cold plate design | 
| 6.4.9. | Senior Flexonics - battery cold plate materials choice | 
| 6.4.10. | Graphite heat spreaders | 
| 6.4.11. | NeoGraf - graphitic thermal materials | 
| 6.5. | Other notable developments | 
| 6.5.1. | Temperature monitoring for EV batteries | 
| 6.5.2. | IEE: printed temperature sensor and heater | 
| 6.5.3. | InnovationLab: Integrated pressure/temperature sensors and heaters for battery cells | 
| 6.5.4. | Tab cooling rather than surface cooling | 
| 6.5.5. | Thermoelectric cooling | 
| 6.5.6. | Skin cooling: Aptera Solar EV | 
| 6.6. | Thermal management of EV batteries: use-cases | 
| 6.6.1. | Audi e-tron | 
| 6.6.2. | Audi e-tron GT | 
| 6.6.3. | BMW i3 | 
| 6.6.4. | BYD Blade | 
| 6.6.5. | Chevrolet Bolt | 
| 6.6.6. | Faraday Future FF 91 | 
| 6.6.7. | Ford Mustang Mach-E/Transit/F150 battery | 
| 6.6.8. | Hyundai Kona | 
| 6.6.9. | Hyundai E-GMP | 
| 6.6.10. | Jaguar I-PACE | 
| 6.6.11. | Mercedes EQS | 
| 6.6.12. | MG ZS EV | 
| 6.6.13. | MG cell-to-pack | 
| 6.6.14. | Polestar | 
| 6.6.15. | Rimac Technology | 
| 6.6.16. | Rivian | 
| 6.6.17. | Romeo Power | 
| 6.6.18. | Tesla Model S P85D | 
| 6.6.19. | Tesla Model 3/Y | 
| 6.6.20. | Tesla Model 3/Y prismatic LFP pack | 
| 6.6.21. | Tesla Model S Plaid | 
| 6.6.22. | Tesla 4680 pack | 
| 6.6.23. | Toyota Prius PHEV | 
| 6.6.24. | Toyota RAV4 PHEV | 
| 6.6.25. | Voltabox | 
| 6.6.26. | VW MEB Platform | 
| 6.6.27. | Xerotech | 
| 6.7. | Thermal interface materials for EV battery packs | 
| 6.7.1. | Introduction to thermal interface materials for EVs | 
| 6.7.2. | TIM pack and module overview | 
| 6.7.3. | TIM application - pack and modules | 
| 6.7.4. | TIM application by cell format | 
| 6.7.5. | Key properties for TIMs in EVs | 
| 6.7.6. | Gap pads in EV batteries | 
| 6.7.7. | Switching to gap fillers from pads | 
| 6.7.8. | Dispensing TIMs introduction | 
| 6.7.9. | Challenges for dispensing TIM | 
| 6.7.10. | Thermally conductive adhesives in EV batteries | 
| 6.7.11. | Material options and market comparison | 
| 6.7.12. | TIM chemistry comparison | 
| 6.7.13. | The silicone dilemma for the automotive market | 
| 6.7.14. | Thermal interface material fillers for EV batteries | 
| 6.7.15. | TIM filler comparison and adoption | 
| 6.7.16. | Thermal conductivity comparison of suppliers | 
| 6.7.17. | Factors impacting TIM pricing | 
| 6.7.18. | TIM pricing by supplier | 
| 6.7.19. | TIM in cell-to-pack designs | 
| 6.7.20. | TIM players | 
| 6.7.21. | TIM EV use cases | 
| 6.7.22. | TIM forecasts | 
| 6.8. | Fire protection materials | 
| 6.8.1. | Thermal runaway and fires in EVs | 
| 6.8.2. | Battery fires and related recalls (automotive) | 
| 6.8.3. | Automotive fire incidents: OEMs and causes | 
| 6.8.4. | EV fires compared to ICEs | 
| 6.8.5. | Severity of EV fires | 
| 6.8.6. | EV fires: when do they happen? | 
| 6.8.7. | Regulations | 
| 6.8.8. | What are fire protection materials? | 
| 6.8.9. | Thermally conductive or thermally insulating? | 
| 6.8.10. | Fire protection materials: main categories | 
| 6.8.11. | Material comparison | 
| 6.8.12. | Density vs thermal conductivity - thermally insulating | 
| 6.8.13. | Material market shares | 
| 6.8.14. | Fire protection materials forecast (kg) | 
| 6.8.15. | Fire protection materials | 
| 7. | THERMAL MANAGEMENT IN EV CHARGING STATIONS | 
| 7.1. | Overview of charging levels | 
| 7.2. | High power charging (HPC) will be the new premium public charging solution | 
| 7.3. | Thermal considerations for fast charging | 
| 7.4. | Liquid cooled charging stations | 
| 7.5. | Cable cooling to achieve high power charging | 
| 7.6. | Tesla adopts liquid-cooled cable for its Supercharger | 
| 7.7. | Liquid-cooled connector for ultra fast charging | 
| 7.8. | Brugg eConnect liquid cooled cables | 
| 7.9. | ITT Cannon liquid cooled charging | 
| 7.10. | Immersion cooled charging stations | 
| 7.11. | Two-phase cooled charging cables | 
| 7.12. | Commercial charger benchmark: cooling technology | 
| 7.13. | Charging infrastructure for electric vehicles | 
| 8. | THERMAL MANAGEMENT OF ELECTRIC MOTORS | 
| 8.1. | Overview | 
| 8.1.1. | Electric traction motor types | 
| 8.1.2. | Electric motor type market share | 
| 8.1.3. | Cooling electric motors | 
| 8.2. | Motor cooling strategies | 
| 8.2.1. | Air cooling | 
| 8.2.2. | Water-glycol cooling | 
| 8.2.3. | Oil cooling | 
| 8.2.4. | Electric motor thermal management overview | 
| 8.2.5. | Motor cooling strategy by power | 
| 8.2.6. | Cooling strategy by motor type | 
| 8.2.7. | Cooling technology: OEM strategies | 
| 8.2.8. | Motor cooling strategy by region | 
| 8.2.9. | Motor cooling strategy market share (2015-2022) | 
| 8.2.10. | Motor cooling strategy forecast (units) | 
| 8.2.11. | Alternate cooling structures | 
| 8.2.12. | Refrigerant cooling | 
| 8.2.13. | Immersion cooling | 
| 8.2.14. | Phase change materials | 
| 8.3. | Motor insulation and encapsulation | 
| 8.3.1. | Impregnation and encapsulation | 
| 8.3.2. | Potting and encapsulation: players | 
| 8.3.3. | Axalta - motor insulation | 
| 8.3.4. | Huntsman - epoxy encapsulation and impregnation | 
| 8.3.5. | Sumitomo Bakelite - composite stator encapsulation | 
| 8.3.6. | Elantas - insulation systems for 800V motors | 
| 8.4. | Emerging motor technologies | 
| 8.4.1. | Axial flux motors | 
| 8.4.2. | Axial flux motors enter the EV market | 
| 8.4.3. | Thermal management for axial flux motors | 
| 8.4.4. | In-wheel motors | 
| 8.5. | Thermal management of EV motors: OEM use-cases | 
| 8.5.1. | Audi e-tron | 
| 8.5.2. | Audi Q4 e-tron | 
| 8.5.3. | BMW i3 | 
| 8.5.4. | BMW 5th gen drive | 
| 8.5.5. | Bosch - commercial vehicle motors | 
| 8.5.6. | Chevrolet Bolt (2017-2021) | 
| 8.5.7. | Equipmake: spoke geometry | 
| 8.5.8. | Ford Mustang Mach-E | 
| 8.5.9. | GM Ultium Drive | 
| 8.5.10. | Jaguar I-PACE | 
| 8.5.11. | Huawei - intelligent oil cooling | 
| 8.5.12. | Hyundai E-GMP | 
| 8.5.13. | Koenigsegg - raxial flux | 
| 8.5.14. | LiveWire (Harley Davidson) | 
| 8.5.15. | MAHLE - magnet free oil cooled motor | 
| 8.5.16. | Mercedes EQ | 
| 8.5.17. | Nidec - Gen.2 drive | 
| 8.5.18. | Nissan Leaf | 
| 8.5.19. | Rivian | 
| 8.5.20. | SAIC - oil cooling system | 
| 8.5.21. | Schaeffler - truck motors | 
| 8.5.22. | Tesla Model S (pre-2021) | 
| 8.5.23. | Tesla Model 3 | 
| 8.5.24. | Toyota Prius | 
| 8.5.25. | VW ID3/ID4 | 
| 8.5.26. | Yamaha - hypercar electric motor | 
| 8.5.27. | ZF - commercial vehicle motors | 
| 9. | THERMAL MANAGEMENT IN ELECTRIC VEHICLE POWER ELECTRONICS | 
| 9.1. | Introduction and technology evolution | 
| 9.1.1. | What is power electronics? | 
| 9.1.2. | Power electronics in electric vehicles | 
| 9.1.3. | Power electronics device power ranges | 
| 9.1.4. | Power switches (transistors) | 
| 9.1.5. | Power switch history | 
| 9.1.6. | Wide-bandgap semiconductors | 
| 9.1.7. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride | 
| 9.1.8. | Applications for SiC & GaN | 
| 9.1.9. | Drivers for 800V platforms | 
| 9.1.10. | The Transition to SiC | 
| 9.1.11. | Inverter power modules | 
| 9.1.12. | Inverter package designs | 
| 9.1.13. | Traditional power module packaging | 
| 9.1.14. | Module packaging material dimensions | 
| 9.1.15. | Single side, double side, direct, and direct cooling | 
| 9.1.16. | Double-sided cooling | 
| 9.1.17. | Double-sided cooling examples | 
| 9.1.18. | Baseplate, heat sink, and encapsulation materials | 
| 9.2. | Wire bonds and alternatives | 
| 9.2.1. | Wire bonds | 
| 9.2.2. | Al wire bonds: a common failure point | 
| 9.2.3. | Advanced wire bonding techniques | 
| 9.2.4. | Tesla's novel bonding technique | 
| 9.2.5. | Direct lead bonding (Mitsubishi) | 
| 9.2.6. | Die top system - Heraeus | 
| 9.2.7. | Wire bond technology by supplier | 
| 9.3. | Die attach and future materials | 
| 9.3.1. | Die and substrate attach are common failure modes | 
| 9.3.2. | Which solder for wide bandgap? | 
| 9.3.3. | Why metal sintering for power electronics? | 
| 9.3.4. | Challenges with Ag sintering | 
| 9.3.5. | Simplifications to the manufacturing process | 
| 9.3.6. | Gamechanger? Threats to Ag - Cu sintering pastes | 
| 9.3.7. | Sintering: die-to-substrate, substrate-baseplate or heat sink, die pad to interconnect, etc.) | 
| 9.3.8. | Evolution of Tesla's power electronics | 
| 9.3.9. | Die attach technology evolution | 
| 9.3.10. | Die attach technology by supplier | 
| 9.4. | Substrate materials and future alternatives | 
| 9.4.1. | The choice of ceramic substrate technology | 
| 9.4.2. | The choice of ceramic substrate technology | 
| 9.4.3. | AlN: overcoming its mechanical weakness | 
| 9.4.4. | Thermal conductivity vs thermal expansion | 
| 9.4.5. | Ceramics: CTE mismatch | 
| 9.4.6. | Approaches to metallisation: DPC, DBC, AMB and thick film metallisation | 
| 9.4.7. | Direct plated copper (DPC): pros and cons | 
| 9.4.8. | Double bonded copper (DBC): pros and cons | 
| 9.4.9. | Active metal brazing (AMB): pros and cons | 
| 9.4.10. | Thick film printing | 
| 9.4.11. | Heraeus - materials for power electronics | 
| 9.4.12. | ALMT - MgSiC baseplate | 
| 9.5. | Removing thermal interface materials | 
| 9.5.1. | Why TIM is used in power electronics | 
| 9.5.2. | Why the drive to eliminate the TIM? | 
| 9.5.3. | Thermal grease: other shortcomings | 
| 9.5.4. | EV inverter modules where TIM has been eliminated (1) | 
| 9.5.5. | EV inverter modules where TIM has been eliminated (2) | 
| 9.5.6. | Infineon - pre-applied TIM | 
| 9.5.7. | IGBTs and SiC are not the only TIM area in inverters | 
| 9.6. | Power electronics packages: EV use-cases | 
| 9.7. | Toyota Prius 2004-2010 | 
| 9.8. | 2008 Lexus | 
| 9.9. | Toyota Prius 2010-2015 | 
| 9.10. | Nissan Leaf 2012 | 
| 9.11. | Honda Accord 2014 | 
| 9.12. | Honda Fit (by Mitsubishi) | 
| 9.13. | Toyota Prius 2016 onwards | 
| 9.14. | Chevrolet Volt 2016 (by Delphi) | 
| 9.15. | Cadillac 2016 (by Hitachi) | 
| 9.16. | Audi e-tron 2018 | 
| 9.17. | BWM i3 (by Infineon) | 
| 9.18. | Infineon | 
| 9.19. | Delphi, Cree, Oak Ridge National Laboratory, and Volvo | 
| 9.20. | Tesla's SiC package | 
| 9.21. | What does this mean for the MOSFET package? | 
| 9.22. | STMicro | 
| 9.23. | Continental / Jaguar Land Rover inverter | 
| 9.24. | Nissan Leaf custom inverter design | 
| 9.25. | Hyundai E-GMP (Infineon) | 
| 9.26. | Danfoss | 
| 9.27. | BorgWarner | 
| 9.28. | onsemi | 
| 9.29. | Cooling power electronics: water or oil | 
| 9.29.1. | Inverter package cooling | 
| 9.29.2. | Drivers for direct oil cooling of inverters | 
| 9.29.3. | Advantages, disadvantages and drivers for oil cooled inverters | 
| 9.29.4. | Direct oil cooling projects | 
| 9.29.5. | Inverter cooling strategy forecast (units) | 
| 9.29.6. | Liquid cooled inverter examples | 
| 10. | SUMMARY OF FORECASTS | 
| 10.1. | Forecast methodology | 
| 10.2. | BEV cars with heat pumps forecast (units) | 
| 10.3. | Battery thermal management strategy forecast (GWh) | 
| 10.4. | Immersion fluid volume forecast (passenger cars, liters) | 
| 10.5. | Immersion fluid volume forecast (construction and agriculture EVs, liters) | 
| 10.6. | TIM Forecast for EV batteries by TIM type (kg) | 
| 10.7. | TIM forecast for EV batteries by TIM type (revenue, US$) | 
| 10.8. | TIM Forecast for EV batteries by vehicle type (kg and US$) | 
| 10.9. | Fire protection materials forecast (kg) | 
| 10.10. | Motor cooling strategy forecast (units) | 
| 10.11. | Inverter cooling strategy forecast (units) | 
| 11. | COMPANY PROFILES | 
| 11.1. | ADA Technologies | 
| 11.2. | Amphenol Advanced Sensors | 
| 11.3. | Asahi Kasei | 
| 11.4. | Aspen Aerogels | 
| 11.5. | Axalta | 
| 11.6. | Beam Global/AllCell | 
| 11.7. | Bostik | 
| 11.8. | Cadenza Innovation | 
| 11.9. | CSM | 
| 11.10. | DuPont | 
| 11.11. | e-Mersiv | 
| 11.12. | Elkem | 
| 11.13. | Engineered Fluids | 
| 11.14. | FUCHS | 
| 11.15. | H.B. Fuller | 
| 11.16. | Henkel | 
| 11.17. | Huber Martinswerk | 
| 11.18. | JIOS Aerogel | 
| 11.19. | M&I Materials | 
| 11.20. | NeoGraf | 
| 11.21. | Nexperia | 
| 11.22. | Parker Lord | 
| 11.23. | PST Sensors | 
| 11.24. | Rogers Corporation | 
| 11.25. | Romeo Power | 
| 11.26. | Solvay Specialty Polymers | 
| 11.27. | Ultimate Transmissions | 
| 11.28. | Voltabox | 
| 11.29. | Von Roll | 
| 11.30. | WACKER | 
| 11.31. | Xerotech | 
| 11.32. | XING Mobility | 
| 11.33. | Zeon |