| 1. | EXECUTIVE SUMMARY |
| 1.1. | 5G Base Station Types: Macro Cells and Small Cells |
| 1.2. | 5G Stations Installed per Year (2020-2032) by Cell Type (macro, micro, pico/femto) |
| 1.3. | 5G Stations Installed per Year (2020-2032) by Frequency (Sub-6 GHz & mmWave) |
| 1.4. | 5G Installations by Cell Type and MIMO Size (2020-2032) |
| 1.5. | Shifting to Higher Frequencies Shrinks the Antenna |
| 1.6. | Case Study: Samsung 28 GHz Access Point |
| 1.7. | Key Semiconductor Technology Benchmarking |
| 1.8. | GaN to Win in Sub-6 GHz 5G |
| 1.9. | Si vs Wide Bandgap for mmWave |
| 1.10. | The Array Size and PA Performance Trade-off |
| 1.11. | Semiconductor Comparison |
| 1.12. | Semiconductor Forecast (2020-2032) for Power Amplifiers by Technology |
| 1.13. | LDMOS Power Amplifier Structure |
| 1.14. | Solder Options and Current Die Attach |
| 1.15. | Why Metal Sintering? |
| 1.16. | Ag Sinter Process Conditions Summary |
| 1.17. | Die Attach for Power Amplifiers Forecast |
| 1.18. | Sintering Market Value Forecast |
| 1.19. | TIM Types in 5G |
| 1.20. | Properties of Thermal Interface Materials |
| 1.21. | TIM Properties and Players for 5G Infrastructure |
| 1.22. | Total TIM Forecast for 5G Stations |
| 1.23. | Trends in Smartphone Thermal Material Utilization |
| 1.24. | Thermal Interface Material and Heat Spreader Forecast in Smartphones |
| 1.25. | Summary of Report |
| 1.26. | Company Profiles |
| 2. | INTRODUCTION TO 5G |
| 2.1.1. | Global Snapshot of Allocated/targeted 5G Spectrum |
| 2.1.2. | Differences Between 4G and 5G |
| 2.1.3. | Low, Mid-band 5G is Often the Operator's First Choice to Provide 5G National Coverage |
| 2.1.4. | Approaches to Overcome the Challenges of 5G Limited Coverage |
| 2.1.5. | 5G Commercial/pre-commercial Services by Frequency |
| 2.1.6. | 5G mmWave Commercial/pre-commercial Services (mid 2021) |
| 2.1.7. | The Main Technique Innovations in 5G |
| 2.1.8. | 3 Types of 5G Services |
| 2.1.9. | 5G Supply Chain Overview |
| 2.1.10. | Summary: Global Trends and New Opportunities in 5G |
| 2.2. | Thermal Management for 5G |
| 2.2.1. | Thermal Management for 5G: Introduction |
| 2.2.2. | Thermal Management Contents of the Report |
| 3. | OVERVIEW OF 5G INFRASTRUCTURE |
| 3.1. | From 1G to 5G: Evolution of Cellular Network Infrastructure |
| 3.2. | Architecture of Macro Base Stations |
| 3.3. | Key Challenges for 5G Macro Base Stations |
| 3.4. | 5G Base Station Design Trend |
| 3.5. | 5G Base Station Types: Macro Cells and Small Cells |
| 3.6. | Drivers for Ultra Dense Network (UDN) Deployment in 5G |
| 3.7. | Challenges for Ultra Dense Network Deployment |
| 3.8. | 5G Small Cells Will See Rapid Growth |
| 3.9. | 5G Infrastructure: Huawei, Ericsson, Nokia, ZTE, Samsung and others |
| 3.10. | Competition Landscape for Key 5G Infrastructure Vendors |
| 3.11. | 5G Stations Installed per Year (2020-2032) by Cell Type (macro, micro, pico/femto) |
| 3.12. | 5G Stations Installed per Year (2020-2032) by Frequency (Sub-6 GHz & mmWave) |
| 4. | ANTENNA DESIGN |
| 4.1. | Introduction |
| 4.1.1. | Shifting to Higher Frequencies Shrinks the Antenna |
| 4.1.2. | LTE Antenna Teardown |
| 4.1.3. | Radio Frequency Front End (RFFE) Module |
| 4.1.4. | Density of Components in RFFE |
| 4.1.5. | RF Module Design Architecture |
| 4.1.6. | Hybrid Heterogeneous Approach |
| 4.1.7. | Examples from Satellite and Phased-array Radar |
| 4.1.8. | Examples from Satellite and Phased-array Radar |
| 4.1.9. | Examples from Satellite and Phased-array Radar |
| 4.2. | Massive MIMO |
| 4.2.1. | 5G Installations by Cell Type and MIMO Size (2020-2032) |
| 4.3. | Planar vs Non-planar |
| 4.3.1. | Planar vs Non-planar Design |
| 4.3.2. | Non-planar Design |
| 4.3.3. | Planar Design |
| 4.3.4. | NEC's Antenna Design for Heat Dissipation |
| 4.4. | 5G Use Cases |
| 4.4.1. | Main Suppliers of 5G Active Antenna Unit (AAU) |
| 4.4.2. | Case Study: NEC 5G Radio Unit |
| 4.4.3. | Case Study: Samsung 5G Access Solution for SK Telecom |
| 4.4.4. | Case Study: Nokia and CommScope Passive/Active Antenna |
| 4.4.5. | Intel and Ericsson 28 GHz All-silicon 64 Dual Polarized Antenna |
| 4.4.6. | Fujikura: 28 GHz Phased Array Antenna Module |
| 4.4.7. | Fujikura: 57-71 GHz Module |
| 4.4.8. | Nokia AirScale mMIMO Adaptive Antenna |
| 4.4.9. | Sub-6 GHz Antenna Teardowns |
| 4.4.10. | mmWave Antenna Teardown |
| 4.4.11. | Sub-6 GHz and mmWave in One Unit |
| 4.5. | Thermal Considerations for the Cell Tower |
| 4.5.1. | Thermal Considerations for Cell Towers and Base Stations |
| 4.5.2. | Thermal Considerations for Small Cells |
| 4.5.3. | Nokia's Base Station Liquid Cooling |
| 4.5.4. | ZTE's Award Winning Base Station Design |
| 4.5.5. | Antenna Array Design is Just One Consideration |
| 4.6. | Antenna Component Forecasts |
| 4.6.1. | Antenna Elements Forecast (Infrastructure) |
| 4.6.2. | Power Amplifier Forecast by Frequency |
| 4.6.3. | Power Amplifier Forecast by Station Size |
| 4.6.4. | BFIC Forecast by Frequency |
| 4.6.5. | BFIC Forecast by Station Size |
| 5. | THE CHOICE OF SEMICONDUCTOR TECHNOLOGY FOR 5G |
| 5.1.1. | 5G Frequencies |
| 5.1.2. | Power Amplifier Semiconductor Choices 3G, 4G to 5G |
| 5.1.3. | Wide Bandgap Semiconductor Basics |
| 5.1.4. | The Choice of Semiconductor Technology for 5G |
| 5.1.5. | CMOS Types and Alternatives |
| 5.1.6. | Si vs Wide Bandgap for mmWave |
| 5.1.7. | Key Semiconductor Properties |
| 5.1.8. | Key Semiconductor Technology Benchmarking |
| 5.1.9. | Power vs Frequency Map of Power Amplifier Technologies |
| 5.1.10. | GaAs vs GaN for RF Power Amplifiers |
| 5.1.11. | GaAs vs GaN: Power Density and Footprint |
| 5.1.12. | GaAs vs GaN: Reliability and Dislocation Density |
| 5.1.13. | Main Drawbacks of GaN |
| 5.2. | The GaN Market for RF in 5G |
| 5.2.1. | GaN-on-Si, SiC or Diamond for RF |
| 5.2.2. | GaN Suppliers |
| 5.2.3. | Ampleon |
| 5.2.4. | Analog Devices |
| 5.2.5. | Fujitsu |
| 5.2.6. | Infineon |
| 5.2.7. | MACOM |
| 5.2.8. | Mitsubishi Electric |
| 5.2.9. | Mitsubishi Electric |
| 5.2.10. | Northrop Grumman |
| 5.2.11. | NXP Semiconductor |
| 5.2.12. | NXP Semiconductor |
| 5.2.13. | Qorvo |
| 5.2.14. | Qorvo Sub-6 GHz Products |
| 5.2.15. | Qorvo mmWave Products |
| 5.2.16. | Qorvo and Gapwaves mmWave Antenna |
| 5.2.17. | Qorvo 39 GHz Antenna |
| 5.2.18. | Raytheon |
| 5.2.19. | RFHIC |
| 5.2.20. | Sumitomo Electric |
| 5.2.21. | STMicroelectronics |
| 5.2.22. | Wolfspeed (Cree) |
| 5.2.23. | Wolfspeed GaN-on-SiC Adoption |
| 5.2.24. | Summary of RF GaN Suppliers |
| 5.2.25. | RF GaN Fabrication Lines |
| 5.2.26. | Summary of RF GaN Market for 5G |
| 5.3. | GaN to Dominate Sub-6 GHz? |
| 5.3.1. | LDMOS Dominates Now but Struggles at Sub-6 GHz 5G |
| 5.3.2. | GaN to Win in Sub-6 GHz 5G |
| 5.3.3. | Sub-6 GHz Power Amplifier Forecast by Semiconductor Technology |
| 5.4. | A Different Story for mmWave |
| 5.4.1. | The Situation at mmWave 5G is Drastically Different |
| 5.4.2. | Shift to Higher Frequencies Shrinks the Antenna |
| 5.4.3. | Major Technological Change: From Broadcast to Directional Communication |
| 5.4.4. | Solving the Power Challenge: High Antenna Gain |
| 5.4.5. | The Array Size and PA Performance Trade-off |
| 5.5. | 5G Beamforming ICs Players and Examples |
| 5.5.1. | Analog: 16-channel Dual Polarized BFIC in SOI |
| 5.5.2. | Anokiwave: 4-channel Beamforming ICs in CMOS |
| 5.5.3. | MIXCOMM SOI BFICs |
| 5.5.4. | NXP: 4-channel mmWave BFIC in SiGe |
| 5.5.5. | Otava SiGe BFIC |
| 5.5.6. | pSemi SOI |
| 5.5.7. | Renesas: mmWave BFICs |
| 5.5.8. | Sivers Semiconductors: Licensed and Unlicensed 5G |
| 5.5.9. | Sivers works with Ampleon and Acquires MIXCOMM |
| 5.5.10. | Sivers 32 Channel BFIC |
| 5.5.11. | Summary of BFICs |
| 5.5.12. | mmWave Power Amplifier Forecast by Semiconductor Technology |
| 5.6. | Semiconductor Outlook for 5G |
| 5.6.1. | Semiconductor Comparison |
| 5.6.2. | Semiconductor Choice Forecast |
| 5.6.3. | Semiconductor Forecast (2020-2032) for Power Amplifiers by Technology |
| 5.6.4. | Semiconductor Die Area Forecast (2020-2032) for Power Amplifiers by Technology |
| 6. | CURRENT AND FUTURE DIE ATTACH MATERIALS |
| 6.1.1. | Air Cavity vs Plastic Overmold Packages |
| 6.1.2. | Packaging LDMOS Power Amplifiers |
| 6.1.3. | Packaging GaN Power Amplifiers |
| 6.1.4. | Sub-6 GHz GaN Power Amplifier Example Structure |
| 6.1.5. | LDMOS Power Amplifier Structure |
| 6.1.6. | Benchmarking CTE and Thermal Conductivity of Various Packaging Materials |
| 6.1.7. | LTCC and HTCC Packages |
| 6.1.8. | HTCC Metal-ceramic Package |
| 6.1.9. | LTCC RF Transitions in packages |
| 6.1.10. | Built-in Cu Slugs in GaN Packages |
| 6.1.11. | Current Die Attach Technology for RF GaN PAs |
| 6.1.12. | Solder Options and Current Die Attach |
| 6.1.13. | Emerging Die Attach Technology for RF GaN PAs |
| 6.1.14. | Metal Sintering vs Soldering |
| 6.1.15. | Challenges with Ag Sintering |
| 6.1.16. | Simplifications to the Manufacturing Process |
| 6.1.17. | Nano Particle Ag Sinter |
| 6.1.18. | Why Metal Sintering? |
| 6.1.19. | Gamechanger? Threats to Ag - Cu Sintering Pastes |
| 6.1.20. | Copper Pastes for 5G Antenna |
| 6.1.21. | Cu Sinter Materials |
| 6.1.22. | Cu Sintering: Characteristics |
| 6.1.23. | Reliability of Cu Sintered Joints |
| 6.2. | Suppliers of Ag Sintering Pastes |
| 6.2.1. | Suppliers for Metal Sintering Pastes |
| 6.2.2. | Alpha Assembly: Nanoparticle Paste |
| 6.2.3. | Properties of Ag Sintered or Epoxy Die Attach Materials |
| 6.2.4. | Silver-Sintered Paste Performance |
| 6.2.5. | AMOGREENTECH |
| 6.2.6. | Bando Chemical: Pressure-less Nano Ag Paste |
| 6.2.7. | Henkel: Micro and Nanoparticle Paste |
| 6.2.8. | Henkel: Ag Sintering Pastes |
| 6.2.9. | Henkel: Ag Sintering Pastes |
| 6.2.10. | Heraeus: Ag Sintering Pastes |
| 6.2.11. | Heraeus: Ag Sintering Pastes |
| 6.2.12. | Heraeus: Pressure or Pressure-less Pastes |
| 6.2.13. | Indium Corp: Quick Ag Pressure-less Sinter Pastes |
| 6.2.14. | Kyocera: Nano and Microparticle Paste |
| 6.2.15. | Kyocera: Pressure-less Paste |
| 6.2.16. | Mitsubishi Materials |
| 6.2.17. | NAMICS: Low temperature Ag Sintering Paste |
| 6.2.18. | NAMICS: Various Ag Sintering Pastes |
| 6.2.19. | NAMICS: Ag Sintering Pastes |
| 6.2.20. | Nihon Handa: Pressure-less Silver Paste |
| 6.2.21. | Heraeus and Nihon Handa Cross License |
| 6.2.22. | Nihon Superior: Nano Silver Paste |
| 6.2.23. | Ntrium: Ag Sintering Paste |
| 6.2.24. | Toyo Chem: Nano Ag Paste |
| 6.2.25. | Ag Sinter Process Conditions Summary |
| 6.3. | Suppliers of Cu Sintering Pastes |
| 6.3.1. | Hitachi: Cu Sintering Paste |
| 6.3.2. | Indium Corporation: Nano Copper Paste |
| 6.3.3. | Mitsui Mining: Nano Copper Under N2 |
| 6.3.4. | Mitsui Mining: Nano Copper Sintering Under N2 |
| 6.3.5. | Mitsui Mining: Cu Sintering Paste |
| 6.3.6. | Showa Denko |
| 6.3.7. | Cu Sinter Process Conditions Summary |
| 6.4. | Automation of Die-Attach |
| 6.4.1. | Automating the die attach for 5G power amplifiers |
| 6.4.2. | Palomar Technologies Automated Sintering |
| 6.4.3. | ASM AMICRA Microtechnologies |
| 6.4.4. | BE Semiconductor |
| 6.4.5. | Legacy and Incumbency for Device Assembly |
| 6.5. | Forecast of Die Attach Materials |
| 6.5.1. | Die Attach for Power Amplifiers Forecast |
| 6.5.2. | Sintering Die Attach for PA and LNA Forecast |
| 6.5.3. | Sintering Market Value Forecast |
| 7. | IN-PACKAGE HEAT DISSIPATION |
| 7.1. | Thermal Conductivity of Key Materials in a Package |
| 7.2. | 2D and 3D Package Architectures |
| 7.3. | 2D Packages: Impact of System Architecture on Heat Dissipation |
| 7.4. | Ag Paste to Dissipate Heat from a 3D Package |
| 7.5. | Silver Paste Based Heat Dissipation 'Chimneys' Within Packages |
| 7.6. | Silver Paste Based Heat Dissipation 'Chimneys' Within Packages |
| 7.7. | Creating Thermal Pathways Using Conductive Inks |
| 8. | THERMAL INTERFACE MATERIALS |
| 8.1.1. | Introduction to Thermal Interface Materials (TIM) |
| 8.1.2. | Introduction (2) |
| 8.1.3. | Key Factors in System Level Performance |
| 8.1.4. | Thermal Conductivity vs Thermal Resistance |
| 8.1.5. | Bill of Materials and the Importance of Longevity |
| 8.1.6. | TIM Considerations |
| 8.1.7. | Eight Types of Thermal Interface Material |
| 8.1.8. | Properties of Thermal Interface Materials |
| 8.2. | TIMs in 5G |
| 8.2.1. | Anatomy of a Base Station: Summary |
| 8.2.2. | Baseband Processing Unit and Remote Radio Head |
| 8.2.3. | Path Evolution from Baseband Unit to Antenna |
| 8.2.4. | TIM Types in 5G |
| 8.2.5. | Value Proposition for Liquid TIMs |
| 8.3. | Addressing EMI and Thermal Challenges in 5G |
| 8.3.1. | EMI is More Challenging in 5G |
| 8.3.2. | Antenna De-sense |
| 8.3.3. | Multifunctional TIMs as a Solution |
| 8.3.4. | EMI Gaskets |
| 8.3.5. | Laird |
| 8.3.6. | Schlegel - TIM and EMI |
| 8.3.7. | TIM Combined with EMI Shielding Properties |
| 8.4. | TIM Suppliers for 5G |
| 8.4.1. | 3M - Boron Nitride Fillers |
| 8.4.2. | GLPOLY |
| 8.4.3. | Henkel - Liquid TIMs for Data & Telecoms |
| 8.4.4. | Honeywell |
| 8.4.5. | Laird (DuPont) |
| 8.4.6. | Momentive |
| 8.4.7. | NeoGraf |
| 8.4.8. | Parker |
| 8.4.9. | TIM Suppliers Targeting 5G Applications |
| 8.4.10. | TIM Properties and Players for 5G Infrastructure |
| 8.5. | TIMs for Antenna |
| 8.5.1. | TIM Example: Samsung 5G Access Point |
| 8.5.2. | TIM Example: Samsung Outdoor CPE Unit |
| 8.5.3. | TIM Example: Samsung Indoor CPE Unit |
| 8.5.4. | TIM Forecast for 5G Antenna by Station Size |
| 8.5.5. | TIM Forecast for 5G Antenna by Station Frequency |
| 8.6. | TIMs for BBU |
| 8.6.1. | The 6 Components of a Baseband Processing Unit |
| 8.6.2. | Thermal Material Opportunities for the BBU |
| 8.6.3. | Examples of 5G BBUs |
| 8.6.4. | TIM in BBUs |
| 8.6.5. | BBU Parts I: Main Control Board |
| 8.6.6. | BBU Parts II & III: Baseband Processing Board & Transmission Extension Board |
| 8.6.7. | BBU Parts IV & V: Radio Interface Board & Satellite-card Board |
| 8.6.8. | BBU parts VI: TIM Area in the Power Supply Board |
| 8.6.9. | Summary |
| 8.6.10. | TIM for 5G BBU |
| 8.7. | TIMs for 5G Power Supplies |
| 8.7.1. | Power Consumption in 5G |
| 8.7.2. | Challenges to the 5G Power Supply Industry |
| 8.7.3. | The Dawn of Smart Power? |
| 8.7.4. | GaN Systems - GaN Power Supply and Wireless Power |
| 8.7.5. | Power Consumption Forecast for 5G |
| 8.7.6. | TIM Forecast for Power Supplies |
| 8.8. | Total TIM Forecasts for 5G |
| 8.8.1. | Total TIM Forecast for 5G Stations |
| 8.8.2. | Total TIM Forecast for 5G Stations |
| 9. | THERMAL STRATEGIES FOR ACCESS POINTS |
| 9.1. | Access Points |
| 9.2. | Components Affected by Temperature |
| 9.3. | Boyd's Take on Thermal Design for an Access Point |
| 9.4. | Cradlepoint's Wideband Adapter |
| 9.5. | Huawei 5G CPE Unit |
| 9.6. | ZTE 5G Wi-Fi router |
| 9.7. | Developments for Access Points |
| 10. | THERMAL MANAGEMENT FOR 5G MOBILE DEVICES |
| 10.1. | Thermal Throttling |
| 10.2. | Early 5G Phones Overheating |
| 10.3. | Heat and Dissipation in 5G Smartphones |
| 10.4. | Materials Selection |
| 10.5. | Heat Pipes/ Vapour Chambers |
| 10.6. | Vapour Chambers: OEMs |
| 10.7. | 5G Modem Suppliers |
| 10.8. | Qualcomm's 5G Antenna |
| 10.9. | Apple's 5G Delay and Intel withdraw from Market |
| 10.10. | Smartphone Cooling Now and in the Future |
| 11. | THERMAL INTERFACE MATERIALS AND HEAT SPREADERS IN SMARTPHONES |
| 11.1. | Introduction |
| 11.2. | Overview of Thermal Management Materials Application Areas |
| 11.3. | Use-case: Samsung Galaxy 3 |
| 11.4. | Use-case: Apple iPhone 5 |
| 11.5. | Use-case: Samsung Galaxy S6 |
| 11.6. | Use-case: Samsung Galaxy S7 |
| 11.7. | Use-case: Samsung Galaxy S6 and S7 TIM Area Estimates |
| 11.8. | Use-case: Apple iPhone 7 |
| 11.9. | Use-case: Apple iPhone X |
| 11.10. | Use-case: Samsung Galaxy S9 |
| 11.11. | Galaxy Note 9 Carbon Water Cooling System |
| 11.12. | Use-case: Oppo R17 |
| 11.13. | Use-case: Samsung Galaxy S10 and S10e |
| 11.14. | Use-case: LG v50 ThinQ 5G |
| 11.15. | Use-case: Samsung Galaxy S10 5G |
| 11.16. | Use-case: Samsung Galaxy Note 10+ 5G |
| 11.17. | Use-case: Apple iPhone 12 |
| 11.18. | Use-case: LG v60 ThinQ 5G |
| 11.19. | Use-case: Nubia Red Magic 5G |
| 11.20. | Use-case: Samsung Galaxy S20 5G |
| 11.21. | Use-case: Samsung Galaxy S21 5G |
| 11.22. | Use-case: Samsung Galaxy Note 20 Ultra 5G |
| 11.23. | Use-case: Huawei Mate 20 X 5G |
| 11.24. | Use-case: Sony Xperia Pro |
| 11.25. | Use-case: Apple iPhone 13 Pro |
| 11.26. | Use-case: Google Pixel 6 Pro |
| 11.27. | Smartphone Thermal Material Estimate Summary |
| 11.28. | Trends in Smartphone Thermal Material Utilization |
| 11.29. | Graphitic Heat Spreaders |
| 11.30. | Emerging Advanced Material Solutions |
| 11.31. | Insulation Material |
| 11.32. | Smartphone Unit Forecast |
| 11.33. | Thermal Interface Material and Heat Spreader Forecast in Smartphones |
| 12. | SUMMARY OF REPORT FORECASTS |
| 12.1. | 5G Stations Installed per Year (2020-2032) by Cell Type (macro, micro, pico/femto) |
| 12.2. | 5G Stations Installed per Year (2020-2032) by Frequency (Sub-6 GHz & mmWave) |
| 12.3. | 5G Installations by Cell Type and MIMO Size (2020-2032) |
| 12.4. | Antenna Elements Forecast (Infrastructure) |
| 12.5. | Power Amplifier Forecast by Frequency |
| 12.6. | Power Amplifier Forecast by Station Size |
| 12.7. | BFIC Forecast by Frequency |
| 12.8. | BFIC Forecast by Station Size |
| 12.9. | Sub-6 GHz Power Amplifier Forecast by Semiconductor Technology |
| 12.10. | mmWave Power Amplifier Forecast by Semiconductor Technology |
| 12.11. | Semiconductor Forecast (2020-2032) for Power Amplifiers by Technology |
| 12.12. | Semiconductor Die Area Forecast (2020-2032) for Power Amplifiers by Technology |
| 12.13. | Die Attach for Power Amplifiers Forecast |
| 12.14. | Sintering Die Attach for PA and LNA Forecast |
| 12.15. | Sintering Market Value Forecast |
| 12.16. | TIM Forecast for 5G Antenna by Station Size |
| 12.17. | TIM Forecast for 5G Antenna by Station Frequency |
| 12.18. | TIM for 5G BBU |
| 12.19. | Power Consumption Forecast for 5G |
| 12.20. | TIM Forecast for Power Supplies |
| 12.21. | Total TIM Forecast for 5G Stations |
| 12.22. | Smartphone Unit Forecast |
| 12.23. | Thermal Interface Material and Heat Spreader Forecast in Smartphones |