| 1. | EXECUTIVE SUMMARY | 
| 1.1. | Advanced Li-ion technology key takeaways | 
| 1.2. | Li-ion performance and technology timeline | 
| 1.3. | Key technology developments | 
| 1.4. | Silicon anode summary | 
| 1.5. | Si-anode performance summary | 
| 1.6. | Anode materials comparison | 
| 1.7. | Silicon-anode company technologies and performance | 
| 1.8. | Material opportunities from silicon anodes | 
| 1.9. | Silicon anode value chain | 
| 1.10. | Li-metal anodes | 
| 1.11. | Li-metal battery developers | 
| 1.12. | Comparison of solid-state electrolyte systems | 
| 1.13. | SSB technology summary of various companies | 
| 1.14. | Concluding remarks on solid-state batteries | 
| 1.15. | Cathode development summary | 
| 1.16. | Benefits of high and ultra-high nickel NMC | 
| 1.17. | High-nickel CAM stabilisation | 
| 1.18. | LMR-NMC cost profile | 
| 1.19. | Cathode chemistry impact on lithium consumption | 
| 1.20. | Advanced cathode chemistry comparison | 
| 1.21. | Alternative cathode synthesis routes | 
| 1.22. | Player involvement in advanced cathode technologies | 
| 1.23. | Cell and battery design | 
| 1.24. | Battery technologies - start-up activity | 
| 1.25. | Battery technologies - regional start-up of activity | 
| 1.26. | Battery technologies - level of regional activity | 
| 1.27. | Battery technology start-ups - regional activity | 
| 1.28. | Advanced Li-ion developers | 
| 1.29. | Regional efforts | 
| 1.30. | Battery technology comparison | 
| 1.31. | Performance comparison by popular cell chemistries | 
| 1.32. | Improvements to cell energy density and specific energy | 
| 1.33. | Readiness level snapshot | 
| 1.34. | Risks and challenges in new battery technology commercialisation | 
| 1.35. | Risks and challenges in new battery technology commercialisation | 
| 1.36. | BEV anode forecast (GWh) | 
| 1.37. | BEV anode forecast (kt, US$B) | 
| 1.38. | Advanced Li-ion anode forecast | 
| 1.39. | BEV car cathode forecast (GWh) | 
| 1.40. | BEV cathode forecast (GWh) | 
| 1.41. | EV cathode forecast (GWh) | 
| 2. | INTRODUCTION | 
| 2.1. | Defining the scope of advanced Li-ion batteries | 
| 2.2. | Trends in the Li-ion market | 
| 2.3. | What is a Li-ion battery? | 
| 2.4. | Li-ion cathode materials - LCO and LFP | 
| 2.5. | Li-ion cathode materials - NMC, NCA and LMO | 
| 2.6. | Li-ion anode materials - graphite and LTO | 
| 2.7. | Li-ion anode materials - silicon and lithium metal | 
| 2.8. | Li-ion electrolytes | 
| 2.9. | Li-ion value chain (US$) | 
| 2.10. | Examples of new technology entry | 
| 3. | ANODES | 
| 3.1. | Introduction | 
| 3.1.1. | Types of lithium battery by anode | 
| 3.1.2. | Anode materials discussion | 
| 3.1.3. | Anode materials discussion | 
| 3.1.4. | Strengths and weaknesses of anode materials | 
| 3.1.5. | Li-ion anode materials compared | 
| 3.1.6. | Silicon Anode Technology and Performance | 
| 3.1.7. | Definitions | 
| 3.1.8. | The promise of silicon | 
| 3.1.9. | Alloy anode materials | 
| 3.1.10. | The reality of silicon | 
| 3.1.11. | Comparing silicon - a high-level overview | 
| 3.1.12. | Solutions for silicon incorporation | 
| 3.1.13. | Solutions for silicon incorporation | 
| 3.1.14. | Key silicon anode solutions | 
| 3.1.15. | Silicon-carbon composites | 
| 3.1.16. | Silicon deposition | 
| 3.1.17. | Silicon oxides and coatings | 
| 3.1.18. | Manufacturing silicon anode material | 
| 3.1.19. | Top Si-anode patent assignee topics | 
| 3.1.20. | Top 3 patent assignee Si-anode technology comparison | 
| 3.1.21. | Value proposition of high silicon content anodes | 
| 3.1.22. | Cell energy density increases with silicon content | 
| 3.1.23. | Strengths and weaknesses of anode materials | 
| 3.1.24. | Silicon anodes offer significant benefits but also challenges | 
| 3.1.25. | Key metrics for silicon anodes | 
| 3.1.26. | Silicon-anode company technologies and performance | 
| 3.1.27. | Cell specification data examples | 
| 3.1.28. | Example cell performance data | 
| 3.1.29. | Example cell performance data | 
| 3.1.30. | Example anode material and half-cell performance data | 
| 3.1.31. | Commercial silicon anode specification | 
| 3.1.32. | Commercial silicon anode specification | 
| 3.1.33. | Silicon anode material - Wacker Chemie | 
| 3.1.34. | Silicon anode material - Umicore | 
| 3.1.35. | Silicon anode performance | 
| 3.1.36. | Silicon anode calendar life | 
| 3.1.37. | Silicon anode cost benefits | 
| 3.1.38. | Silicon anode cost potential | 
| 3.1.39. | Silicon anode environmental benefits | 
| 3.1.40. | Concluding remarks on Si-anode performance | 
| 3.1.41. | Silicon Anode Market | 
| 3.1.42. | 2022 silicon anode player developments | 
| 3.1.43. | 2022 silicon anode player developments | 
| 3.1.44. | 2023 silicon anode player developments | 
| 3.1.45. | 2023 silicon anode player developments | 
| 3.1.46. | Silicon anode deployment | 
| 3.1.47. | Current silicon use | 
| 3.1.48. | Silicon use in EVs | 
| 3.1.49. | Silicon and LFP | 
| 3.1.50. | Silicon in consumer devices | 
| 3.1.51. | Established company interest in silicon anodes | 
| 3.1.52. | Silicon-anode companies | 
| 3.1.53. | Silicon-anode companies | 
| 3.1.54. | Funding for silicon anodes continues | 
| 3.1.55. | Silicon anode start-ups - funding | 
| 3.1.56. | Investors into silicon anode start-ups | 
| 3.1.57. | Investors into silicon anode start-ups | 
| 3.1.58. | Investors into silicon anode start-ups | 
| 3.1.59. | Regional Si-anode activity | 
| 3.1.60. | Growth in silicon anode start-ups | 
| 3.1.61. | Silicon anode production plans | 
| 3.1.62. | Silicon anode production expanding | 
| 3.1.63. | Development timelines | 
| 3.1.64. | Silicon anode commercialisation timeline | 
| 3.1.65. | Example timelines | 
| 3.1.66. | Comments on commercialisation timelines | 
| 3.1.67. | Strategic partnerships and agreements developing for silicon anode start-ups | 
| 3.1.68. | Notable players for silicon EV battery technology | 
| 3.1.69. | Concluding remarks on advanced silicon anode development | 
| 3.1.70. | Silicon Anode Player Profile Examples | 
| 3.1.71. | IDTechEx silicon anode company index | 
| 3.1.72. | Silicon anodes - critical comparison | 
| 3.1.73. | Silicon anodes - critical comparison | 
| 3.1.74. | Amprius' technology | 
| 3.1.75. | E-magy | 
| 3.1.76. | Enevate overview | 
| 3.1.77. | Enevate's technology | 
| 3.1.78. | Enovix background and technology | 
| 3.1.79. | Enovix cell performance | 
| 3.1.80. | Group14 Technologies | 
| 3.1.81. | LeydenJar Technologies overview | 
| 3.1.82. | LeydenJar's technology | 
| 3.1.83. | Ionblox | 
| 3.1.84. | Ionblox cell performance examples | 
| 3.1.85. | Nanomakers | 
| 3.1.86. | Nanomakers nano silicon powder | 
| 3.1.87. | Nexeon - patents | 
| 3.1.88. | Nexeon - patents | 
| 3.1.89. | Paraclete | 
| 3.1.90. | Sila Nano | 
| 3.1.91. | Silicon anode materials discussion | 
| 3.1.92. | Concluding remarks on silicon anodes | 
| 3.2. | Lithium-Metal Anodes | 
| 3.2.1. | Introduction | 
| 3.2.2. | Solid-state battery and lithium metal anodes | 
| 3.2.3. | Enabling Li-metal without solid-electrolytes | 
| 3.2.4. | Li-metal anodes can increase battery energy density | 
| 3.2.5. | Li-metal battery developers | 
| 3.2.6. | SES | 
| 3.2.7. | SES technology | 
| 3.2.8. | SES cell performance | 
| 3.2.9. | Sion Power | 
| 3.2.10. | Sion Power technology | 
| 3.2.11. | Cuberg | 
| 3.2.12. | Applications for Li-metal | 
| 3.2.13. | The need for thin and cheap lithium foils | 
| 3.2.14. | Li-metal corp | 
| 3.2.15. | Pure Lithium Corporation | 
| 3.2.16. | Pure Lithium's Li-foil electrode production | 
| 3.2.17. | Impact of Li-metal anodes on lithium demand | 
| 3.2.18. | Anode-less cell design | 
| 3.2.19. | Anode-less lithium-metal cell benefits | 
| 3.2.20. | Anode-less lithium-metal cell developers | 
| 3.2.21. | Hybrid batteries could enable anode-free use | 
| 3.2.22. | High energy Li-ion anode technology overview | 
| 3.2.23. | Example timelines | 
| 3.2.24. | Concluding remarks on Li-metal anodes | 
| 3.3. | LTO/XNO (Lithium and Niobium Titanates) | 
| 3.3.1. | Introduction to lithium titanate oxide (LTO) | 
| 3.3.2. | Where will LTO play a role? | 
| 3.3.3. | Comparing LTO and graphite | 
| 3.3.4. | Commercial LTO comparisons | 
| 3.3.5. | Lithium titanate to niobium titanium oxide | 
| 3.3.6. | Niobium based anodes - Nyobolt | 
| 3.3.7. | Vanadium oxide anodes - TyFast | 
| 3.3.8. | Overview of LTO, niobium and vanadium based anodes | 
| 4. | CATHODES | 
| 4.1. | Introduction | 
| 4.1.1. | Cathode introduction | 
| 4.1.2. | Overview of Li-ion cathodes | 
| 4.2. | High and Ultra-High Nickel NMC | 
| 4.2.1. | High-nickel layered oxides definition and nomenclature | 
| 4.2.2. | Benefits of high and ultra-high nickel NMC | 
| 4.2.3. | Benefits of high and ultra-high nickel NMC | 
| 4.2.4. | High-Ni / Ni-rich cycle life and stability issues | 
| 4.2.5. | Key issues with high-nickel layered oxides | 
| 4.2.6. | Routes to high nickel cathode stabilisation | 
| 4.2.7. | Routes to high-nickel cathodes | 
| 4.2.8. | Single crystal cathodes | 
| 4.2.9. | Single crystal performance | 
| 4.2.10. | High-nickel CAM stabilisation | 
| 4.2.11. | Umicore | 
| 4.2.12. | EcoPro BM | 
| 4.2.13. | SVolt | 
| 4.2.14. | High-nickel products | 
| 4.2.15. | Ultra-high nickel cathode timelines | 
| 4.2.16. | Outlook on high-Ni - commentary | 
| 4.3. | Zero-Cobalt NMx | 
| 4.3.1. | Zero-cobalt NMx | 
| 4.3.2. | NMA cathode | 
| 4.3.3. | High-nickel NMA | 
| 4.3.4. | Extending mid-Ni voltage | 
| 4.3.5. | Impact of high-voltage NMC operation | 
| 4.3.6. | Impact of high-voltage operation | 
| 4.4. | Lithium-Manganese-Rich (Li-Mn-Rich, LMR-NMC) | 
| 4.4.1. | Lithium-manganese-rich, over-lithiated, LMR-NMC cathodes | 
| 4.4.2. | Overview of Li-Mn-rich cathodes LMR-NMC | 
| 4.4.3. | Stabilising lithium and manganese-rich | 
| 4.4.4. | LMR-NMC energy density | 
| 4.4.5. | LMR-NMC cost profile | 
| 4.4.6. | Lithium-manganese-rich cathode developers | 
| 4.4.7. | Commercial lithium-manganese-rich cathode development | 
| 4.4.8. | Lithium-manganese-rich LXMO | 
| 4.4.9. | Hybrid battery chemistry design for manganese-rich | 
| 4.4.10. | Lithium-manganese-rich cathode SWOT | 
| 4.5. | LNMO | 
| 4.5.1. | High-voltage spinel cathode LNMO | 
| 4.5.2. | LNMO development | 
| 4.5.3. | LNMO performance | 
| 4.5.4. | LNMO performance impact | 
| 4.5.5. | LNMO material intensity | 
| 4.5.6. | Cathode chemistry impact on lithium consumption | 
| 4.5.7. | LNMO cost impact | 
| 4.5.8. | LNMO cathode SWOT | 
| 4.6. | LMFP | 
| 4.6.1. | LMFP cathodes | 
| 4.6.2. | Lithium manganese iron phosphate LMFP | 
| 4.6.3. | LMFP performance and cost impact | 
| 4.6.4. | LMFP performance characteristics | 
| 4.6.5. | LFMP battery performance | 
| 4.6.6. | LMFP commercial development | 
| 4.6.7. | LMFP outlook | 
| 4.6.8. | LMFP cathode SWOT | 
| 4.7. | Alternative Cathode Production Routes | 
| 4.7.1. | Alternative cathode synthesis routes | 
| 4.7.2. | Conventional NMC synthesis | 
| 4.7.3. | Conventional LFP synthesis | 
| 4.7.4. | Dry cathode synthesis | 
| 4.7.5. | Alternative synthesis routes | 
| 4.7.6. | 6K Inc | 
| 4.7.7. | 6K Energy technology | 
| 4.7.8. | Nano One | 
| 4.7.9. | Nano One Materials technology | 
| 4.7.10. | Sylvatex | 
| 4.7.11. | Novonix | 
| 4.7.12. | Novonix cathode technology | 
| 4.7.13. | HiT Nano | 
| 4.7.14. | HiT Nano technology | 
| 4.7.15. | Xerion | 
| 4.7.16. | Xerion cathode | 
| 4.7.17. | Cathode synthesis environmental impact | 
| 4.7.18. | Alternative cathode production companies | 
| 4.7.19. | New cathode synthesis outlook | 
| 4.7.20. | Recycled cathodes | 
| 4.7.21. | Cathode recycling developments | 
| 4.7.22. | Recycled CAM | 
| 4.8. | Conclusions | 
| 4.8.1. | Concluding remarks on cathode development | 
| 4.8.2. | Key cathode material developments overview | 
| 4.8.3. | Future cathode prospects | 
| 4.8.4. | Future cathode technology overview | 
| 4.8.5. | Cathode comparisons | 
| 4.8.6. | Player advanced cathode technologies | 
| 4.8.7. | Advanced cathode material players | 
| 4.8.8. | Cathode material addressable markets | 
| 5. | SOLID-STATE BATTERIES | 
| 5.1. | Introduction to solid-state batteries | 
| 5.2. | Classifications of solid-state electrolyte | 
| 5.3. | Comparison of solid-state electrolyte systems | 
| 5.4. | Solid-state electrolyte technology approach | 
| 5.5. | Analysis of SSB features | 
| 5.6. | Summary of solid-state electrolyte technology | 
| 5.7. | Current electrolyte challenges and solutions | 
| 5.8. | Solid electrolyte material comparison | 
| 5.9. | SSB company commercial plans | 
| 5.10. | Solid state battery collaborations /investment by Automotive OEMs | 
| 5.11. | Location overview of major solid-state battery companies | 
| 5.12. | Technology summary of various companies | 
| 5.13. | Solid-state - Blue Solutions | 
| 5.14. | Solid-state - Prologium | 
| 5.15. | Pack considerations for SSBs | 
| 5.16. | Concluding remarks on solid-state batteries | 
| 6. | CELL AND BATTERY DESIGN | 
| 6.1. | Cell Design and Inactive Materials | 
| 6.1.1. | 4680 tabless cell | 
| 6.1.2. | Increasing cell sizes | 
| 6.1.3. | Bipolar cell design | 
| 6.1.4. | Thick format electrodes | 
| 6.1.5. | Thick format electrodes - 24m | 
| 6.1.6. | Dual electrolyte Li-ion | 
| 6.1.7. | Multi-layer electrodes - EnPower | 
| 6.1.8. | Impact of multi-layer electrode design | 
| 6.1.9. | Prieto's 3D cell design (1/2) | 
| 6.1.10. | Prieto's 3D cell design (2/2) | 
| 6.1.11. | Addionics 3D current collector | 
| 6.1.12. | Electrolyte decomposition | 
| 6.1.13. | Electrolyte additives 1 | 
| 6.1.14. | Electrolyte additives 2 | 
| 6.1.15. | Electrolyte additives 3 | 
| 6.1.16. | Electrolyte developments | 
| 6.1.17. | Electrolyte patent topic comparisons - key battery players | 
| 6.1.18. | Electrolyte patent topic comparisons - key electrolyte players | 
| 6.1.19. | Carbon nanotubes in Li-ion | 
| 6.1.20. | Key Supply Chain Relationships | 
| 6.1.21. | Results showing impact of CNT use in Li-ion electrodes | 
| 6.1.22. | Results showing SWCNT improving in LFP batteries | 
| 6.1.23. | Improved performance at higher C-rate | 
| 6.1.24. | Significance of dispersion in energy storage | 
| 6.1.25. | Graphene coatings for Li-ion | 
| 6.2. | Evolving Cell Performance | 
| 6.2.1. | Energy density by cathode | 
| 6.2.2. | BEV cell energy density trend | 
| 6.2.3. | Cell energy density trend | 
| 6.2.4. | Cell performance specification examples | 
| 6.2.5. | Comparing commercial cell chemistries | 
| 6.3. | Battery Packs and BMS | 
| 6.3.1. | What is Cell-to-pack? | 
| 6.3.2. | Drivers and Challenges for Cell-to-pack | 
| 6.3.3. | What is Cell-to-chassis/body? | 
| 6.3.4. | BYD Blade battery | 
| 6.3.5. | CATL Cell to Pack | 
| 6.3.6. | Cell-to-pack and Cell-to-body Designs Summary | 
| 6.3.7. | Gravimetric Energy Density and Cell-to-pack Ratio | 
| 6.3.8. | Volumetric Energy Density and Cell-to-pack Ratio | 
| 6.3.9. | Cell-to-pack or modular? | 
| 6.3.10. | Outlook for Cell-to-pack & Cell-to-body Designs | 
| 6.3.11. | Bipolar batteries | 
| 6.3.12. | Bipolar-enabled CTP | 
| 6.3.13. | ProLogium: "MAB" EV battery pack assembly | 
| 6.3.14. | Electric vehicle hybrid battery packs | 
| 6.3.15. | CATL hybrid Li-ion and Na-ion pack concept | 
| 6.3.16. | CATL hybrid pack designs | 
| 6.3.17. | Our Next Energy | 
| 6.3.18. | High energy plus high cycle life | 
| 6.3.19. | Nio's dual-chemistry battery | 
| 6.3.20. | Nio's design to improve thermal performance | 
| 6.3.21. | Nio hybrid battery operation | 
| 6.3.22. | Fuel cell electric vehicles are hybrid systems | 
| 6.3.23. | Hybrid battery + supercapacitor | 
| 6.3.24. | Concluding remarks | 
| 6.3.25. | BMS innovation overview | 
| 6.3.26. | Improvements to battery performance from BMS development | 
| 6.3.27. | BMS introduction | 
| 6.3.28. | Functions of a BMS | 
| 6.3.29. | Innovations in BMS | 
| 6.3.30. | Advanced BMS activity | 
| 6.3.31. | Fast charging limitations | 
| 6.3.32. | Impact of fast-charging | 
| 6.3.33. | Fast charging protocols | 
| 6.3.34. | Electric car charging profiles | 
| 6.3.35. | BMS solutions for fast charging | 
| 6.3.36. | Development of wireless BMS | 
| 6.3.37. | Analog Devices wBMS | 
| 6.3.38. | Wireless BMS patent example | 
| 6.3.39. | Wireless BMS pros and cons | 
| 6.3.40. | Concluding remarks on BMS development | 
| 6.4. | Fast-Charging Batteries | 
| 6.4.1. | Fast charging at different scales | 
| 6.4.2. | Why can't you just fast charge? | 
| 6.4.3. | Rate limiting factors at the material level | 
| 6.4.4. | EV fast charging | 
| 6.4.5. | Fast-charging battery developments | 
| 6.4.6. | Fast charge design hierarchy | 
| 6.4.7. | Fast-charging battery developments | 
| 6.4.8. | Fast charging batteries - outlook discussion | 
| 7. | FORECASTS | 
| 7.1. | Total addressable markets | 
| 7.2. | Total addressable markets (GWh) | 
| 7.3. | BEV car cathode forecast (GWh) | 
| 7.4. | BEV cathode forecast (GWh) | 
| 7.5. | EV cathode forecast (GWh) | 
| 7.6. | Silicon anode forecast methodology | 
| 7.7. | BEV anode forecast (GWh) | 
| 7.8. | BEV anode forecast (kt, $B) | 
| 7.9. | EV Anode forecast (GWh) | 
| 7.10. | EV anode forecast (GWh, kt) | 
| 7.11. | Consumer devices Anode forecast (GWh, ktpa) | 
| 7.12. | Consumer devices Anode forecast (GWh, kt) | 
| 7.13. | Advanced anode forecast (GWh) | 
| 7.14. | Advanced anode forecast (GWh, kt, $B) | 
| 8. | COMPANY PROFILES | 
| 8.1. | 6K Energy | 
| 8.2. | 6K Energy | 
| 8.3. | Addionics | 
| 8.4. | Basquevolt | 
| 8.5. | Brill Power | 
| 8.6. | BTR New Material Group | 
| 8.7. | BYD Auto | 
| 8.8. | CENS Materials | 
| 8.9. | Echion Technologies | 
| 8.10. | EcoPro BM | 
| 8.11. | Enovix | 
| 8.12. | EnPower Inc | 
| 8.13. | Forsee Power | 
| 8.14. | Ganfeng Lithium | 
| 8.15. | GDI | 
| 8.16. | Gotion | 
| 8.17. | Group14 Technologies | 
| 8.18. | Group14 Technologies | 
| 8.19. | IBU-tec Advanced Materials AG | 
| 8.20. | Ionblox | 
| 8.21. | Ionic Mineral Technologies | 
| 8.22. | Iontra | 
| 8.23. | Leclanché: Heavy-Duty EV Battery Systems | 
| 8.24. | Leyden-Jar Technologies | 
| 8.25. | LeydenJar Technologies | 
| 8.26. | Li-Metal Corp | 
| 8.27. | Nano One Materials | 
| 8.28. | Nanomakers | 
| 8.29. | New Dominion Enterprises | 
| 8.30. | NIO (Battery) | 
| 8.31. | OneD Battery Sciences | 
| 8.32. | Our Next Energy (ONE) | 
| 8.33. | Prieto Battery | 
| 8.34. | Qingtao Energy Development | 
| 8.35. | QuantumScape | 
| 8.36. | Relectrify | 
| 8.37. | Sila Nanotechnologies | 
| 8.38. | Sion Power | 
| 8.39. | Solid Power | 
| 8.40. | South 8 Technologies | 
| 8.41. | Storedot | 
| 8.42. | Stratus Materials | 
| 8.43. | Sylvatex | 
| 8.44. | WAE Technologies | 
| 8.45. | Yoshino Technology Inc |