| 1. | EXECUTIVE SUMMARY |
| 1.1. | General Trend of TIMs in Power Electronics (1) |
| 1.2. | General Trend of TIMs in Power Electronics (2) |
| 1.3. | Where are TIMs used in EV Power Electronics |
| 1.4. | SiC MOSFET by Automotive OEMs and Suppliers |
| 1.5. | Trend Towards Double-Sided Cooling for Automotive Applications |
| 1.6. | Transition to Double-Sided Liquid Cooling |
| 1.7. | Market Share of Single and Double-Sided Cooling: 2024-2034 |
| 1.8. | Summary of TIM2 Properties |
| 1.9. | BLT Comparison of TIM2 |
| 1.10. | Coefficient of Thermal Expansion (CTE) Comparison of Die-Attach and Substrate-Attach |
| 1.11. | Thermal Conductivity Comparison of TIM1s |
| 1.12. | Yearly Die Attach Area Forecast (1000m2): 2024-2034 |
| 1.13. | Yearly Die Attach Area Forecast by Type (1000m2): 2024-2034 |
| 1.14. | Yearly Substrate Attach Area Forecast (1000m2): 2024-2034 |
| 1.15. | Yearly TIM2 Area Forecast (1000m2): 2024-2034 |
| 1.16. | Yearly Market Size of TIMs Forecast (US$ Millions): 2024-2034 |
| 1.17. | Inverter Liquid Cooling Strategy Forecast (Unit: Millions): 2024-2034 |
| 2. | POWER ELECTRONICS THERMAL MANAGEMENT OVERVIEW |
| 2.1. | An Overview of Power Electronics TIMs |
| 2.2. | Summary of Cooling Approaches - (1) |
| 2.3. | Summary of Cooling Approaches - (2) |
| 2.4. | Thermal Management Strategies in Power Electronics (1) |
| 2.5. | Thermal Management Strategies in Power Electronics (2) |
| 2.6. | What is Power Electronics? |
| 2.7. | Power Electronics Use in Electric Vehicles |
| 2.8. | Power Electronics Material Evolution |
| 2.9. | Transistor History & MOSFET Overview - How Does it Affect Thermal Management? |
| 2.10. | Wide Bandgap (WBG) Semiconductor Advantages & Disadvantages |
| 2.11. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride Semiconductors |
| 2.12. | Advantages of SiC Material |
| 2.13. | The Transition to SiC (market share 2015-2023) |
| 2.14. | Is all 800V SiC? Audi e-tron 2018 and Porsche Taycan? |
| 2.15. | Limitations of SiC Power Devices |
| 2.16. | GaN's Potential to Reach High Voltage |
| 2.17. | SiC & GaN have Substantial Room for Improvement |
| 2.18. | Automotive GaN Device Suppliers are Growing |
| 2.19. | SiC Drives 800V Platforms |
| 2.20. | GaN to Become Preferred OBC Technology |
| 2.21. | Challenges for GaN Devices |
| 2.22. | Inverter Overview |
| 2.23. | Traditional EV Inverter Power Modules |
| 2.24. | Inverter Package Designs |
| 2.25. | Power Module Packaging |
| 2.26. | Module Packaging Material Dimensions |
| 2.27. | Trends Toward Minimization |
| 2.28. | Single Side, Dual Side, Indirect, and Direct Cooling |
| 2.29. | Baseplate, Heatsink, and Encapsulation Materials |
| 2.30. | Cooling Concept Assessment |
| 3. | SINGLE-SIDED COOLING |
| 3.1. | Key Summary of Single-Sided Cooling |
| 3.2. | Benefits and Drawbacks of Single-Sided Cooling |
| 3.3. | TIM2 Area Largely Similar for Single-Sided Cooling |
| 3.4. | onsemi - EliteSiC Power Module |
| 3.5. | ST Microelectronics - Tesla Model 3 |
| 4. | DOUBLE-SIDED COOLING |
| 4.1. | Key Summary of Double-Sided Cooling (DSC) |
| 4.2. | Double-Sided Cooling Introduction |
| 4.3. | Double-Sided Cooling Examples |
| 4.4. | The Need for Double-Sided Cooling in Power Modules |
| 4.5. | Infineon's HybridPACK DSC |
| 4.6. | Inner Structure of HybridPACK DSC |
| 4.7. | onsemi - VE-Trac Family modules |
| 4.8. | CRRC |
| 4.9. | Hitachi Inverter - Double-Sided Cooling |
| 4.10. | Trend Towards Double-Sided Cooling for Automotive Applications |
| 4.11. | Market Share of Single and Double-Sided Cooling: 2024-2034 |
| 5. | TIM1 - SOLDER AND SINTERED METAL |
| 5.1. | Overview |
| 5.1.1. | Introduction to TIM1 |
| 5.1.2. | TIM1 in Flip Chip Packaging |
| 5.1.3. | Trends of TIM1 in 3D Semiconductor Packaging |
| 5.1.4. | Solder TIM1 and Liquid Metal |
| 5.1.5. | Solders as TIM1 |
| 5.1.6. | Solder TIM1 - Minimize Warpage and Delamination (1) |
| 5.1.7. | Solder TIM1 - Minimize Warpage and Delamination (2) |
| 5.1.8. | Device Packaging Dynamics |
| 5.1.9. | MacDermid Alpha - Solders for Automotive Power Electronics |
| 5.1.10. | Trend Towards Sintering |
| 5.1.11. | Market News and Trends of Sintering |
| 5.2. | Ag Sintered TIM |
| 5.2.1. | Metal Sheet, Graphite Sheet, and Ag Sintered TIM |
| 5.2.2. | Process Steps for Applying Ag Sintered Paste |
| 5.2.3. | Die-Attach Solution - Summary of Materials (1) |
| 5.2.4. | Die-Attach Solution - Summary of Materials (2) |
| 5.2.5. | Silver Sintering Paste |
| 5.2.6. | Properties and Performance of Solder Alloys and Conductive Adhesives |
| 5.2.7. | Solder Options and Current Die Attach |
| 5.2.8. | Why Sliver Sintering |
| 5.2.9. | Silver-Sintered Paste Performance |
| 5.2.10. | Sumitomo Bakelite |
| 5.2.11. | Henkel - Die Attach Paste |
| 5.2.12. | Osaka Soda - Ag Sintered Paste |
| 5.2.13. | MacDermid Alpha |
| 5.2.14. | AMOGREENTECH |
| 5.2.15. | Company Profiles for Sintered Paste Suppliers |
| 5.3. | Cu Sintered TIM |
| 5.3.1. | Cu Sinter Materials |
| 5.3.2. | Cu Sintering: Characteristics |
| 5.3.3. | Reliability of Cu Sintered Joints |
| 5.3.4. | Graphene Enhanced Sintered Copper TIMs |
| 5.3.5. | Mitsubishi Materials: Cu Sinter Material Poised for Market Entry |
| 5.3.6. | Mitsubishi Materials: Copper Alloys to Improve Power Density |
| 5.3.7. | Mitsui: Cu Sinter Half the Cost of Ag Sinter |
| 5.3.8. | Copper Sintering - Challenges |
| 5.3.9. | Porosity (%) of Metal Sinter Paste |
| 5.3.10. | Hitachi: Cu Sintering Paste |
| 5.3.11. | Indium Corporation: Nano Copper Paste |
| 5.3.12. | Mitsui Mining. - Copper Sinter Paste Pressure and Pressureless |
| 5.3.13. | Mitsui Mining: Nano Copper Under N2 |
| 5.3.14. | Showa Denko, formerly Hitachi Chemical - Cu sinter [P] |
| 5.3.15. | Showa Denko, formerly Hitachi Chemical - Cu sinter [N] and Cu sinter [F] |
| 5.3.16. | Mitsui: Cu Sinter - Half the Cost of Ag Sinter |
| 5.3.17. | Summary of Cu sinter [P], Cu sinter [N], and Cu sinter [F] |
| 6. | TIM2 |
| 6.1. | Overview |
| 6.1.1. | Thermal Interface Material 2 - Summary |
| 6.1.2. | TIM2 - IDTechEx's Analysis on Promising TIM2 |
| 6.2. | TIM2 in Si IGBT |
| 6.2.1. | Why TIM2 is Used in Power Electronics |
| 6.2.2. | Where are TIM2 Used in EV IGBTs? |
| 6.3. | TIM2 EV Power Module Use Cases |
| 6.3.1. | TIMs in Infineon's IGBT |
| 6.3.2. | TIMs in onsemi IGBT Modules |
| 6.3.3. | Semikron Danfoss - TIM Overview |
| 6.3.4. | Semikron Danfoss - Graphite TIM |
| 6.3.5. | TIMs in Mitsubishi Electric - IGBT modules NX type |
| 6.3.6. | Nissan Leaf 2012 Inverter |
| 6.4. | High-Performance TIM2s |
| 6.4.1. | Arieca - Liquid Metal Based Polymer TIM for the Semiconductor Industry |
| 6.4.2. | Zeon - High Performance TIMs |
| 6.4.3. | Thermexit (Nanoramic Labs): High Thermal Conductivity Materials |
| 6.4.4. | TIMs from Wacker Chemical Group |
| 6.5. | TIM2 in SiC MOSFET |
| 6.5.1. | SiC MOSFETs Compared with Si IGBTs |
| 6.5.2. | TIMs in onsemi SiC MOSFET |
| 6.5.3. | Pre-Apped TIM in Infineon's CoolSiC |
| 6.5.4. | Infineon's SiC MOSFET Thermal Resistance |
| 6.5.5. | Wolfspeed |
| 6.5.6. | TIMs in Wolfspeed's SiC Power Modules |
| 6.5.7. | Microchip - SiC MOSFETs |
| 6.5.8. | STMicroelectronics |
| 6.5.9. | Solders as TIM2s - Package-Attach from Indium Corp |
| 6.6. | Removing Thermal Interface Material |
| 6.6.1. | Why the Drive to Eliminate the TIM? |
| 6.6.2. | Thermal Grease: Other Shortcomings |
| 6.6.3. | EV Inverter Modules Where TIM has Been Eliminated (1) |
| 6.6.4. | EV Inverter Modules Where TIM has Been Eliminated (2) |
| 6.6.5. | Hitachi DSC package used in Audi e-Tron |
| 7. | SUMMARY OF TIM2 AND TIM1 IN POWER MODULES |
| 7.1. | Overview of TIM2 in SiC MOSFET and Si IGBT - (1) |
| 7.2. | Overview of TIM2 in SiC MOSFET and Si IGBT - (2) |
| 7.3. | Overview of TIM2 in SiC MOSFET and Si IGBT - (3) |
| 7.4. | Overview of TIM1 in SiC MOSFET and Si IGBT (1) |
| 7.5. | Overview of TIM1 in SiC MOSFET and Si IGBT (2) |
| 7.6. | IGBTs and SiC are not the Only TIM Area in Inverters |
| 7.7. | Summary of TIM2 Properties |
| 7.8. | Choice of Non-Bonded TIMs |
| 7.9. | BLT Comparison of TIM2 |
| 7.10. | Coefficient of Thermal Expansion (CTE) Comparison of TIM1 |
| 7.11. | Thermal Conductivity Comparison of TIM1s |
| 7.12. | Temperature Considerations of TIM1s |
| 7.13. | TIM1 - Size of the Die |
| 7.14. | Summary of Die Attach Sizes: 2024-2034 |
| 8. | WIRE BONDING |
| 8.1. | Wire Bonds |
| 8.2. | Al Wire Bonds: A Common Failure Point |
| 8.3. | Advanced Wire Bonding Techniques |
| 8.4. | Tesla's Novel Bonding Technique |
| 8.5. | Direct Lead Bonding (Mitsubshi) |
| 8.6. | Die Top System - Heraeus |
| 8.7. | Danfoss Bond Buffer - IGBT |
| 8.8. | Wire Bond Technology by Supplier |
| 8.9. | Wire Bond Trend: Copper Wire and Direct Lead Bonding |
| 9. | SUBSTRATE MATERIALS |
| 9.1. | The Choice of Ceramic Substrate Technology |
| 9.2. | The Choice of Ceramic Substrate Technology |
| 9.3. | Materials of Substrate - Comparison |
| 9.4. | Comparison of Al2O3, ZTA, and Si3N4 Substrate |
| 9.5. | Materials in Packaging |
| 9.6. | Substrate - Key for Market Penetration? |
| 9.7. | Substrate Area Estimation (mm2/kW) |
| 9.8. | Substrate Manufacturing - SOITEC's SiC Substrates (1) |
| 9.9. | SOITEC's SiC Substrates (2) |
| 9.10. | Approaches to Metallization: DPC, DBC, AMB and Thick Film Metallization |
| 9.11. | Double Bonded Copper (DBC): Pros and Cons |
| 9.12. | Active Metal Brazing (AMB): Pros and Cons |
| 9.13. | Si3N4 Substrate: Overall Best Performance with Low Cost-Effectiveness |
| 9.14. | Si3N4 Ag Free AMB Market Position |
| 9.15. | AlN: Overcoming its Mechanical Weakness |
| 10. | SUPPLY CHAIN FOR POWER SEMICONDUCTOR MATERIALS, DEVICES & OEMS |
| 10.1. | Automotive Power Module Supplier Market Shares |
| 10.2. | Evolving SiC Supply Relationships |
| 10.3. | SiC Supply Chain in 2023 |
| 10.4. | Power Electronics Supply Chain - Trend Towards SiC |
| 10.5. | Summary of Power Electronics Supplier |
| 10.6. | Summary of Automotive OEMs, Tier Ones and Power Electronics Suppliers (1) |
| 10.7. | Summary of Automotive OEMs, Tier Ones and Power Electronics Suppliers (2) |
| 10.8. | SiC MOSFET by Automotive OEMs and Suppliers - Leading OEMs |
| 11. | COOLING POWER ELECTRONICS: WATER OR OIL |
| 11.1. | Direct and Indirect Cooling (1) |
| 11.2. | Direct and Indirect Cooling (2) |
| 11.3. | Inverter Package Cooling |
| 11.4. | Drivers for Direct Oil Cooling of Inverters |
| 11.5. | Advantages, Disadvantages and Drivers for Oil Cooled Inverters |
| 11.6. | Direct Oil Cooling Projects |
| 11.7. | Fraunhofer and Marelli - Directly Cooled Inverter |
| 11.8. | Hitachi - Oil Cooled Inverter |
| 11.9. | Jaguar I-PACE 2019 |
| 11.10. | Lucid - Water Cooled Onboard Charger |
| 11.11. | Nissan Leaf |
| 11.12. | Renault Zoe 2013 (Continental) |
| 11.13. | Rivian |
| 11.14. | Senior Flexonics - IGBT Heat Sink Design |
| 11.15. | Tesla Model 3 |
| 11.16. | VW ID |
| 11.17. | BorgWarner Heat Sinks |
| 11.18. | Emerging 800V Platforms & SiC Inverters |
| 11.19. | Inverter Liquid Cooling Strategy Forecast (Unit: Millions): 2024-2034 |
| 12. | USE CASES |
| 12.1. | Use Case: Direct Water Cooling - Hitachi Suijin Series |
| 12.2. | Use Case: GaN Systems HybridPack |
| 12.3. | Use Case: Infineon - HybridPACK™ Drive |
| 12.4. | Use Case: Mitsubishi J1-Series |
| 12.5. | Use Case: Semikron Skim 93 |
| 12.6. | Use Case: Wolfspeed - Cree FM3, Cree XM 3 |
| 12.7. | Use Case: Denso Power Card |
| 12.8. | TIM2 - Area Estimation of STMicroelectronics ACEPACK SMIT |
| 12.9. | onsemi |
| 12.10. | Bosch's SiC Inverter Progress |
| 12.11. | Infineon and STMicro Inverter Package Materials |
| 12.12. | New Power Modules from Mitsubishi |
| 12.13. | Chinese Automotive OEMs - Vertical Integration and Local Suppliers |
| 13. | FORECASTS |
| 13.1. | Area and Volume Estimation of Different Layers in IGBT Components |
| 13.2. | Area Estimation of TIM2 |
| 13.3. | Summary of Power Electronics Supplier in EV Industry |
| 13.4. | Area of SiC MOSFET, Si IGBT and GaN HEMT |
| 13.5. | Shrinking Die Sizes with SiC MOSFETs |
| 13.6. | Trend of Die Sizes - Si IGBT and SiC MOSFET |
| 13.7. | SiC MOSFET and Si IGBT: Die Area for Inverters - mm2/kW |
| 13.8. | Table Summarizing the Si IGBT and Si MOSFET Die Area for Inverters |
| 13.9. | SiC MOSFET and Si IGBT - mm2/kW Comparison for Inverters |
| 13.10. | Yearly TIM Area Forecast for EV Power Electronics (1000m2): 2024-2034 |
| 13.11. | Yearly TIM Area Forecast by TIM Type |
| 13.12. | Yearly Die Attach Area Forecast for BEV & PHEV (1000m2): 2024-2034 |
| 13.13. | Die Attach Area by Technology Forecast - m2: 2024-2034 |
| 13.14. | Yearly Die Attach Area by Vehicle Component Forecast - m2: 2024-2034 |
| 13.15. | Yearly Die Attach Area Forecast by Solder Type (m2): 2024-2034 |
| 13.16. | Market Share of Discrete and Modules: 2024-2034 |
| 13.17. | TIM2 Area Estimation for Inverters |
| 13.18. | Yearly TIM2 Area Forecast (m2): 2024-2034 |
| 13.19. | Yearly Substrate Attach Area Forecast by Tech (m2): 2024-2034 |
| 13.20. | Cost Forecast - TIM2, Solder Alloy Die-Attach, Solder Alloy Substrate-Attach and Ag-Sintered Paste: 2024-2034 |
| 13.21. | Yearly Market Size Forecast of TIM1 and TIM2 (US$ Millions): 2024-2034 |
| 13.22. | Inverter Liquid Cooling Strategy Forecast (Unit: Millions): 2024-2034 |