| 1. | EXECUTIVE SUMMARY | 
| 1.1. | General Trend of TIMs in Power Electronics (1) | 
| 1.2. | General Trend of TIMs in Power Electronics (2) | 
| 1.3. | Where are TIMs used in EV Power Electronics | 
| 1.4. | SiC MOSFET by Automotive OEMs and Suppliers | 
| 1.5. | Trend Towards Double-Sided Cooling for Automotive Applications | 
| 1.6. | Transition to Double-Sided Liquid Cooling | 
| 1.7. | Market Share of Single and Double-Sided Cooling: 2024-2034 | 
| 1.8. | Summary of TIM2 Properties | 
| 1.9. | BLT Comparison of TIM2 | 
| 1.10. | Coefficient of Thermal Expansion (CTE) Comparison of Die-Attach and Substrate-Attach | 
| 1.11. | Thermal Conductivity Comparison of TIM1s | 
| 1.12. | Yearly Die Attach Area Forecast (1000m2): 2024-2034 | 
| 1.13. | Yearly Die Attach Area Forecast by Type (1000m2): 2024-2034 | 
| 1.14. | Yearly Substrate Attach Area Forecast (1000m2): 2024-2034 | 
| 1.15. | Yearly TIM2 Area Forecast (1000m2): 2024-2034 | 
| 1.16. | Yearly Market Size of TIMs Forecast (US$ Millions): 2024-2034 | 
| 1.17. | Inverter Liquid Cooling Strategy Forecast (Unit: Millions): 2024-2034 | 
| 2. | POWER ELECTRONICS THERMAL MANAGEMENT OVERVIEW | 
| 2.1. | An Overview of Power Electronics TIMs | 
| 2.2. | Summary of Cooling Approaches - (1) | 
| 2.3. | Summary of Cooling Approaches - (2) | 
| 2.4. | Thermal Management Strategies in Power Electronics (1) | 
| 2.5. | Thermal Management Strategies in Power Electronics (2) | 
| 2.6. | What is Power Electronics? | 
| 2.7. | Power Electronics Use in Electric Vehicles | 
| 2.8. | Power Electronics Material Evolution | 
| 2.9. | Transistor History & MOSFET Overview - How Does it Affect Thermal Management? | 
| 2.10. | Wide Bandgap (WBG) Semiconductor Advantages & Disadvantages | 
| 2.11. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride Semiconductors | 
| 2.12. | Advantages of SiC Material | 
| 2.13. | The Transition to SiC (market share 2015-2023) | 
| 2.14. | Is all 800V SiC? Audi e-tron 2018 and Porsche Taycan? | 
| 2.15. | Limitations of SiC Power Devices | 
| 2.16. | GaN's Potential to Reach High Voltage | 
| 2.17. | SiC & GaN have Substantial Room for Improvement | 
| 2.18. | Automotive GaN Device Suppliers are Growing | 
| 2.19. | SiC Drives 800V Platforms | 
| 2.20. | GaN to Become Preferred OBC Technology | 
| 2.21. | Challenges for GaN Devices | 
| 2.22. | Inverter Overview | 
| 2.23. | Traditional EV Inverter Power Modules | 
| 2.24. | Inverter Package Designs | 
| 2.25. | Power Module Packaging | 
| 2.26. | Module Packaging Material Dimensions | 
| 2.27. | Trends Toward Minimization | 
| 2.28. | Single Side, Dual Side, Indirect, and Direct Cooling | 
| 2.29. | Baseplate, Heatsink, and Encapsulation Materials | 
| 2.30. | Cooling Concept Assessment | 
| 3. | SINGLE-SIDED COOLING | 
| 3.1. | Key Summary of Single-Sided Cooling | 
| 3.2. | Benefits and Drawbacks of Single-Sided Cooling | 
| 3.3. | TIM2 Area Largely Similar for Single-Sided Cooling | 
| 3.4. | onsemi - EliteSiC Power Module | 
| 3.5. | ST Microelectronics - Tesla Model 3 | 
| 4. | DOUBLE-SIDED COOLING | 
| 4.1. | Key Summary of Double-Sided Cooling (DSC) | 
| 4.2. | Double-Sided Cooling Introduction | 
| 4.3. | Double-Sided Cooling Examples | 
| 4.4. | The Need for Double-Sided Cooling in Power Modules | 
| 4.5. | Infineon's HybridPACK DSC | 
| 4.6. | Inner Structure of HybridPACK DSC | 
| 4.7. | onsemi - VE-Trac Family modules | 
| 4.8. | CRRC | 
| 4.9. | Hitachi Inverter - Double-Sided Cooling | 
| 4.10. | Trend Towards Double-Sided Cooling for Automotive Applications | 
| 4.11. | Market Share of Single and Double-Sided Cooling: 2024-2034 | 
| 5. | TIM1 - SOLDER AND SINTERED METAL | 
| 5.1. | Overview | 
| 5.1.1. | Introduction to TIM1 | 
| 5.1.2. | TIM1 in Flip Chip Packaging | 
| 5.1.3. | Trends of TIM1 in 3D Semiconductor Packaging | 
| 5.1.4. | Solder TIM1 and Liquid Metal | 
| 5.1.5. | Solders as TIM1 | 
| 5.1.6. | Solder TIM1 - Minimize Warpage and Delamination (1) | 
| 5.1.7. | Solder TIM1 - Minimize Warpage and Delamination (2) | 
| 5.1.8. | Device Packaging Dynamics | 
| 5.1.9. | MacDermid Alpha - Solders for Automotive Power Electronics | 
| 5.1.10. | Trend Towards Sintering | 
| 5.1.11. | Market News and Trends of Sintering | 
| 5.2. | Ag Sintered TIM | 
| 5.2.1. | Metal Sheet, Graphite Sheet, and Ag Sintered TIM | 
| 5.2.2. | Process Steps for Applying Ag Sintered Paste | 
| 5.2.3. | Die-Attach Solution - Summary of Materials (1) | 
| 5.2.4. | Die-Attach Solution - Summary of Materials (2) | 
| 5.2.5. | Silver Sintering Paste | 
| 5.2.6. | Properties and Performance of Solder Alloys and Conductive Adhesives | 
| 5.2.7. | Solder Options and Current Die Attach | 
| 5.2.8. | Why Sliver Sintering | 
| 5.2.9. | Silver-Sintered Paste Performance | 
| 5.2.10. | Sumitomo Bakelite | 
| 5.2.11. | Henkel - Die Attach Paste | 
| 5.2.12. | Osaka Soda - Ag Sintered Paste | 
| 5.2.13. | MacDermid Alpha | 
| 5.2.14. | AMOGREENTECH | 
| 5.2.15. | Company Profiles for Sintered Paste Suppliers | 
| 5.3. | Cu Sintered TIM | 
| 5.3.1. | Cu Sinter Materials | 
| 5.3.2. | Cu Sintering: Characteristics | 
| 5.3.3. | Reliability of Cu Sintered Joints | 
| 5.3.4. | Graphene Enhanced Sintered Copper TIMs | 
| 5.3.5. | Mitsubishi Materials: Cu Sinter Material Poised for Market Entry | 
| 5.3.6. | Mitsubishi Materials: Copper Alloys to Improve Power Density | 
| 5.3.7. | Mitsui: Cu Sinter Half the Cost of Ag Sinter | 
| 5.3.8. | Copper Sintering - Challenges | 
| 5.3.9. | Porosity (%) of Metal Sinter Paste | 
| 5.3.10. | Hitachi: Cu Sintering Paste | 
| 5.3.11. | Indium Corporation: Nano Copper Paste | 
| 5.3.12. | Mitsui Mining. - Copper Sinter Paste Pressure and Pressureless | 
| 5.3.13. | Mitsui Mining: Nano Copper Under N2 | 
| 5.3.14. | Showa Denko, formerly Hitachi Chemical - Cu sinter [P] | 
| 5.3.15. | Showa Denko, formerly Hitachi Chemical - Cu sinter [N] and Cu sinter [F] | 
| 5.3.16. | Mitsui: Cu Sinter - Half the Cost of Ag Sinter | 
| 5.3.17. | Summary of Cu sinter [P], Cu sinter [N], and Cu sinter [F] | 
| 6. | TIM2 | 
| 6.1. | Overview | 
| 6.1.1. | Thermal Interface Material 2 - Summary | 
| 6.1.2. | TIM2 - IDTechEx's Analysis on Promising TIM2 | 
| 6.2. | TIM2 in Si IGBT | 
| 6.2.1. | Why TIM2 is Used in Power Electronics | 
| 6.2.2. | Where are TIM2 Used in EV IGBTs? | 
| 6.3. | TIM2 EV Power Module Use Cases | 
| 6.3.1. | TIMs in Infineon's IGBT | 
| 6.3.2. | TIMs in onsemi IGBT Modules | 
| 6.3.3. | Semikron Danfoss - TIM Overview | 
| 6.3.4. | Semikron Danfoss - Graphite TIM | 
| 6.3.5. | TIMs in Mitsubishi Electric - IGBT modules NX type | 
| 6.3.6. | Nissan Leaf 2012 Inverter | 
| 6.4. | High-Performance TIM2s | 
| 6.4.1. | Arieca - Liquid Metal Based Polymer TIM for the Semiconductor Industry | 
| 6.4.2. | Zeon - High Performance TIMs | 
| 6.4.3. | Thermexit (Nanoramic Labs): High Thermal Conductivity Materials | 
| 6.4.4. | TIMs from Wacker Chemical Group | 
| 6.5. | TIM2 in SiC MOSFET | 
| 6.5.1. | SiC MOSFETs Compared with Si IGBTs | 
| 6.5.2. | TIMs in onsemi SiC MOSFET | 
| 6.5.3. | Pre-Apped TIM in Infineon's CoolSiC | 
| 6.5.4. | Infineon's SiC MOSFET Thermal Resistance | 
| 6.5.5. | Wolfspeed | 
| 6.5.6. | TIMs in Wolfspeed's SiC Power Modules | 
| 6.5.7. | Microchip - SiC MOSFETs | 
| 6.5.8. | STMicroelectronics | 
| 6.5.9. | Solders as TIM2s - Package-Attach from Indium Corp | 
| 6.6. | Removing Thermal Interface Material | 
| 6.6.1. | Why the Drive to Eliminate the TIM? | 
| 6.6.2. | Thermal Grease: Other Shortcomings | 
| 6.6.3. | EV Inverter Modules Where TIM has Been Eliminated (1) | 
| 6.6.4. | EV Inverter Modules Where TIM has Been Eliminated (2) | 
| 6.6.5. | Hitachi DSC package used in Audi e-Tron | 
| 7. | SUMMARY OF TIM2 AND TIM1 IN POWER MODULES | 
| 7.1. | Overview of TIM2 in SiC MOSFET and Si IGBT - (1) | 
| 7.2. | Overview of TIM2 in SiC MOSFET and Si IGBT - (2) | 
| 7.3. | Overview of TIM2 in SiC MOSFET and Si IGBT - (3) | 
| 7.4. | Overview of TIM1 in SiC MOSFET and Si IGBT (1) | 
| 7.5. | Overview of TIM1 in SiC MOSFET and Si IGBT (2) | 
| 7.6. | IGBTs and SiC are not the Only TIM Area in Inverters | 
| 7.7. | Summary of TIM2 Properties | 
| 7.8. | Choice of Non-Bonded TIMs | 
| 7.9. | BLT Comparison of TIM2 | 
| 7.10. | Coefficient of Thermal Expansion (CTE) Comparison of TIM1 | 
| 7.11. | Thermal Conductivity Comparison of TIM1s | 
| 7.12. | Temperature Considerations of TIM1s | 
| 7.13. | TIM1 - Size of the Die | 
| 7.14. | Summary of Die Attach Sizes: 2024-2034 | 
| 8. | WIRE BONDING | 
| 8.1. | Wire Bonds | 
| 8.2. | Al Wire Bonds: A Common Failure Point | 
| 8.3. | Advanced Wire Bonding Techniques | 
| 8.4. | Tesla's Novel Bonding Technique | 
| 8.5. | Direct Lead Bonding (Mitsubshi) | 
| 8.6. | Die Top System - Heraeus | 
| 8.7. | Danfoss Bond Buffer - IGBT | 
| 8.8. | Wire Bond Technology by Supplier | 
| 8.9. | Wire Bond Trend: Copper Wire and Direct Lead Bonding | 
| 9. | SUBSTRATE MATERIALS | 
| 9.1. | The Choice of Ceramic Substrate Technology | 
| 9.2. | The Choice of Ceramic Substrate Technology | 
| 9.3. | Materials of Substrate - Comparison | 
| 9.4. | Comparison of Al2O3, ZTA, and Si3N4 Substrate | 
| 9.5. | Materials in Packaging | 
| 9.6. | Substrate - Key for Market Penetration? | 
| 9.7. | Substrate Area Estimation (mm2/kW) | 
| 9.8. | Substrate Manufacturing - SOITEC's SiC Substrates (1) | 
| 9.9. | SOITEC's SiC Substrates (2) | 
| 9.10. | Approaches to Metallization: DPC, DBC, AMB and Thick Film Metallization | 
| 9.11. | Double Bonded Copper (DBC): Pros and Cons | 
| 9.12. | Active Metal Brazing (AMB): Pros and Cons | 
| 9.13. | Si3N4 Substrate: Overall Best Performance with Low Cost-Effectiveness | 
| 9.14. | Si3N4 Ag Free AMB Market Position | 
| 9.15. | AlN: Overcoming its Mechanical Weakness | 
| 10. | SUPPLY CHAIN FOR POWER SEMICONDUCTOR MATERIALS, DEVICES & OEMS | 
| 10.1. | Automotive Power Module Supplier Market Shares | 
| 10.2. | Evolving SiC Supply Relationships | 
| 10.3. | SiC Supply Chain in 2023 | 
| 10.4. | Power Electronics Supply Chain - Trend Towards SiC | 
| 10.5. | Summary of Power Electronics Supplier | 
| 10.6. | Summary of Automotive OEMs, Tier Ones and Power Electronics Suppliers (1) | 
| 10.7. | Summary of Automotive OEMs, Tier Ones and Power Electronics Suppliers (2) | 
| 10.8. | SiC MOSFET by Automotive OEMs and Suppliers - Leading OEMs | 
| 11. | COOLING POWER ELECTRONICS: WATER OR OIL | 
| 11.1. | Direct and Indirect Cooling (1) | 
| 11.2. | Direct and Indirect Cooling (2) | 
| 11.3. | Inverter Package Cooling | 
| 11.4. | Drivers for Direct Oil Cooling of Inverters | 
| 11.5. | Advantages, Disadvantages and Drivers for Oil Cooled Inverters | 
| 11.6. | Direct Oil Cooling Projects | 
| 11.7. | Fraunhofer and Marelli - Directly Cooled Inverter | 
| 11.8. | Hitachi - Oil Cooled Inverter | 
| 11.9. | Jaguar I-PACE 2019 | 
| 11.10. | Lucid - Water Cooled Onboard Charger | 
| 11.11. | Nissan Leaf | 
| 11.12. | Renault Zoe 2013 (Continental) | 
| 11.13. | Rivian | 
| 11.14. | Senior Flexonics - IGBT Heat Sink Design | 
| 11.15. | Tesla Model 3 | 
| 11.16. | VW ID | 
| 11.17. | BorgWarner Heat Sinks | 
| 11.18. | Emerging 800V Platforms & SiC Inverters | 
| 11.19. | Inverter Liquid Cooling Strategy Forecast (Unit: Millions): 2024-2034 | 
| 12. | USE CASES | 
| 12.1. | Use Case: Direct Water Cooling - Hitachi Suijin Series | 
| 12.2. | Use Case: GaN Systems HybridPack | 
| 12.3. | Use Case: Infineon - HybridPACK™ Drive | 
| 12.4. | Use Case: Mitsubishi J1-Series | 
| 12.5. | Use Case: Semikron Skim 93 | 
| 12.6. | Use Case: Wolfspeed - Cree FM3, Cree XM 3 | 
| 12.7. | Use Case: Denso Power Card | 
| 12.8. | TIM2 - Area Estimation of STMicroelectronics ACEPACK SMIT | 
| 12.9. | onsemi | 
| 12.10. | Bosch's SiC Inverter Progress | 
| 12.11. | Infineon and STMicro Inverter Package Materials | 
| 12.12. | New Power Modules from Mitsubishi | 
| 12.13. | Chinese Automotive OEMs - Vertical Integration and Local Suppliers | 
| 13. | FORECASTS | 
| 13.1. | Area and Volume Estimation of Different Layers in IGBT Components | 
| 13.2. | Area Estimation of TIM2 | 
| 13.3. | Summary of Power Electronics Supplier in EV Industry | 
| 13.4. | Area of SiC MOSFET, Si IGBT and GaN HEMT | 
| 13.5. | Shrinking Die Sizes with SiC MOSFETs | 
| 13.6. | Trend of Die Sizes - Si IGBT and SiC MOSFET | 
| 13.7. | SiC MOSFET and Si IGBT: Die Area for Inverters - mm2/kW | 
| 13.8. | Table Summarizing the Si IGBT and Si MOSFET Die Area for Inverters | 
| 13.9. | SiC MOSFET and Si IGBT - mm2/kW Comparison for Inverters | 
| 13.10. | Yearly TIM Area Forecast for EV Power Electronics (1000m2): 2024-2034 | 
| 13.11. | Yearly TIM Area Forecast by TIM Type | 
| 13.12. | Yearly Die Attach Area Forecast for BEV & PHEV (1000m2): 2024-2034 | 
| 13.13. | Die Attach Area by Technology Forecast - m2: 2024-2034 | 
| 13.14. | Yearly Die Attach Area by Vehicle Component Forecast - m2: 2024-2034 | 
| 13.15. | Yearly Die Attach Area Forecast by Solder Type (m2): 2024-2034 | 
| 13.16. | Market Share of Discrete and Modules: 2024-2034 | 
| 13.17. | TIM2 Area Estimation for Inverters | 
| 13.18. | Yearly TIM2 Area Forecast (m2): 2024-2034 | 
| 13.19. | Yearly Substrate Attach Area Forecast by Tech (m2): 2024-2034 | 
| 13.20. | Cost Forecast - TIM2, Solder Alloy Die-Attach, Solder Alloy Substrate-Attach and Ag-Sintered Paste: 2024-2034 | 
| 13.21. | Yearly Market Size Forecast of TIM1 and TIM2 (US$ Millions): 2024-2034 | 
| 13.22. | Inverter Liquid Cooling Strategy Forecast (Unit: Millions): 2024-2034 |